MATH 570: MATHEMATICAL LOGIC

HOMEWORK 9

Due date: Nov 5 (Wed)

- 1. Determine which of the following statement are true for an arbitrary τ_{a} -sentence θ and prove your answers:
 - (a) $\mathsf{PA} \vdash \theta \iff \mathbf{N} \models \mathbf{Provable}_{\mathsf{PA}}([\theta]),$
 - (b) $\mathsf{PA} \vdash \theta \rightarrow \mathbf{Provable}_{\mathsf{PA}}([\theta]),$
 - (c) $\mathsf{PA} \vdash \theta \implies \mathsf{PA} \vdash \mathbf{Provable}_{\mathsf{PA}}([\theta]).$
- **2.** Let ϕ and θ be τ_a -sentences. Consider the following statements:
 - (1) $\mathsf{PA} \vdash \phi \implies \mathsf{PA} \vdash \theta;$
 - (2) $\mathsf{PA} \vdash \phi \rightarrow \theta$.

Are they equivalent for all ϕ, θ ? If not, which implication holds and which may fail? Prove your answers.

- 3. Let Determine which of the following τ_{a} -sentences are provable in PA for an arbitrary τ_{a} -sentence θ :
 - (a) **Provable**_{PA}($[\theta]$) $\rightarrow \theta$.
 - (b) $\mathbf{Provable}_{\mathsf{PA}\cup\{\neg\theta\}}([\theta]) \rightarrow \mathbf{Provable}_{\mathsf{PA}}([\theta]),$
 - (c) $\operatorname{Provable}_{\mathsf{PA}}([\theta]) \to \neg \operatorname{Provable}_{\mathsf{PA}}([\neg \theta]),$
 - (d) $\operatorname{Provable}_{\mathsf{PA}}(\operatorname{Provable}_{\mathsf{PA}}([\theta])) \rightarrow \operatorname{Provable}_{\mathsf{PA}}([\theta]),$
 - (e) $\operatorname{Provable}_{\mathsf{PA}}([\theta]) \rightarrow \operatorname{Provable}_{\mathsf{PA}}(\operatorname{Provable}_{\mathsf{PA}}([\theta])).$

Prove all your answers except for part (e). For the latter, just make a guess.

- 4. Show that the set of Σ_1^0 relations is closed under finite unions/intersections and taking projections, i.e. under the operations \lor, \land, \exists .
- **5.** For $A \subseteq \mathbb{N}$ and $f : \mathbb{N} \to \mathbb{N}$, we say that f enumerates A if the image of f is A, i.e. $f[\mathbb{N}] = A$.

Definition. A set $A \subseteq \mathbb{N}$ is called *recursively enumerable* (r.e. for short) if there is a recursive function $f : \mathbb{N} \to \mathbb{N}$ enumerating A.

Prove the following characterizations of recursive and Σ_1^0 sets:

- (a) A set $A \subseteq \mathbb{N}$ is recursive if and only if it is either finite or enumerable by a *strictly increasing* recursive function.
- (b) For a nonempty set $A \subseteq \mathbb{N}$, the following are equivalent:

(1) A is Σ_1^0

- (2) A is either finite or enumerable by an *injective* recursive function
- (3) A is r.e.
- 6. Let T be a τ -theory, where τ is a finite signature.

- (a) Prove that if T is decidable, then it has a recursive completion.¹
- (b) Deduce Church's theorem: Any τ -theory that interprets Q is undecidable.
- 7. Prove Craig's lemma, namely, that any Σ_1^0 theory T (in a finite signature τ) has a recursive axiomatization. Conclude that we CAN replace "recursive" by " Σ_1^0 " in Rosser's form of the First Incompleteness theorem.

HINT: For a sentence ϕ , ϕ being in T is "recursively witnessed" by a number $n_{\phi} \in \mathbb{N}$. Modify ϕ into a logically equivalent sentence that encodes the witness n_{ϕ} .

REMARK 1: Recall that we couldn't replace "recursive" by "arithmetical" in Rosser's form of the First Incompleteness theorem.

REMARK 2: One can in fact show that any Σ_1^0 theory has a *primitive recursive* axiomatization.

- **8.** Let $A, B \subseteq \mathbb{N}^k$. Show the following:
 - (a) (Reduction property for Σ_1^0) If A, B are Σ_1^0 , then there are disjoint Σ_1^0 sets $A^*, B^* \subseteq \mathbb{N}^k$ such that $A^* \subseteq A, B^* \subseteq B$ and $A^* \cup B^* = A \cup B$.
 - (b) (Separation property for Π_1^0) If A, B are disjoint Π_1^0 sets, then there is a Δ_1^0 (and hence recursive) set $S \subseteq \mathbb{N}^k$ such that $S \supseteq A$ and $S \cap B = \emptyset$.

¹Many thanks to Anton Bernshteyn for suggesting this question.