MATH 570: MATHEMATICAL LOGIC

HOMEWORK 8

Due date: Oct 22 (Wed)

- **1.** Let $n, m \in \mathbb{N}$. Show the following:
 - (a) $\neg n \le m \iff \mathsf{Q} \vdash \neg \Delta(n) \le \Delta(m);$ HINT: For \iff show the contrapositive.
 - (b) $\mathbf{Q} \vdash x \leq \Delta(n) \lor \Delta(n+1) \leq x$. HINT: Prove by induction on n.
- **2.** (a) Show that the representability of recursive functions in Q implies that recursive functions/relations are arithmetical.
 - (b) Give a direct proof that recursive functions/relations are arithmetical (without using their representability in Q).
- **3.** Show that Gödel's Incompleteness theorem (the original form) is equivalent to the statement that $\mathsf{Th}(\mathbf{N})$ is not recursive.
- 4. (a) Show that we can replace "recursive" by "arithmetical" in the statement of Gödel's Incompleteness theorem (the original form), i.e. prove that if $T \subseteq \mathsf{Th}(\mathbf{N})$ is arithmetical, then it is incomplete.
 - (b) Show that there exists an arithmetical completion of PA, i.e. there is a complete τ_{a} -theory $T \supseteq PA$ such that $T = \{ {}^{r}\phi : \phi \in T \}$ is an arithmetical subset of N. Conclude that we CANNOT replace "recursive" by "arithmetical" in Rosser's form of the First Incompleteness theorem.