MATH 570: MATHEMATICAL LOGIC

HOMEWORK 8
Due date: Oct 22 (Wed)

1. Let $n, m \in \mathbb{N}$. Show the following:
(a) $\neg n \leq m \Longleftrightarrow \mathrm{Q} \vdash \neg \Delta(n) \leq \Delta(m)$;

Hint: For \Longleftarrow show the contrapositive.
(b) $\mathrm{Q} \vdash x \leq \Delta(n) \vee \Delta(n+1) \leq x$.

Hint: Prove by induction on n.
2. (a) Show that the representability of recursive functions in Q implies that recursive functions/relations are arithmetical.
(b) Give a direct proof that recursive functions/relations are arithmetical (without using their representability in Q).
3. Show that Gödel's Incompleteness theorem (the original form) is equivalent to the statement that $\operatorname{Th}(\mathbf{N})$ is not recursive.
4. (a) Show that we can replace "recursive" by "arithmetical" in the statement of Gödel's Incompleteness theorem (the original form), i.e. prove that if $T \subseteq \operatorname{Th}(\mathbf{N})$ is arithmetical, then it is incomplete.
(b) Show that there exists an arithmetical completion of PA, i.e. there is a complete τ_{a} theory $T \supseteq P A$ such that ${ }^{「} T^{\top}=\left\{{ }^{「} \phi^{`}: \phi \in T\right\}$ is an arithmetical subset of \mathbb{N}. Conclude that we CANNOT replace "recursive" by "arithmetical" in Rosser's form of the First Incompleteness theorem.

