MATH 570: MATHEMATICAL LOGIC

HOMEWORK 7

Due date: Oct 15 (Wed)

- 1. Choose any two of the following facts about the Ackermann function and prove them:
 - (a) $A(n, x + y) \ge A(n, x) + y$;
 - (b) $n \ge 1 \implies A(n+1,y) > A(n,y) + y$;
 - (c) $A(n+1,y) \ge A(n,y+1)$;
 - (d) 2A(n,y) < A(n+2,y);
 - (e) $x < y \implies A(n, x + y) \le A(n + 2, y)$.
- 2. Show that the graph of the Ackermann function is primitive recursive.

HINT: Use a similar argument to the proof that the Ackermann function is recursive, but bound your search using the value of the function.

Note: This implies that the Ackermann function is recursive.

3. (a) Show that the Ackermann function grows faster than any primitive recursive function; more precisely, prove that for any primitive recursive function $f: \mathbb{N}^k \to \mathbb{N}$, there exists $n_f \in \mathbb{N}$ such that $f(\vec{x}) \leq A(n_f, \|\vec{x}\|_1)$ for all $\vec{x} \in \mathbb{N}^k$, where $\|\vec{x}\|_1 = x_1 + ... + x_n$.

HINT: Use Problem 1.

- (b) Conclude that the Ackermann function is not primitive recursive.
- 4. Prove the following proposition using the outline below.

Proposition. There exists a recursive function $\phi : \mathbb{N}^2 \to \mathbb{N}$ such that for every $n, \phi_n := \phi(n,\cdot)$ is primitive recursive and for every $k \in \mathbb{N}$ and every primitive recursive function $f : \mathbb{N}^k \to \mathbb{N}$, there is n such that $\forall \vec{a} \in \mathbb{N}^k$,

$$f(\vec{a}) = \phi_n(\langle \vec{a} \rangle).$$

In the latter case, we say that ϕ_n corresponds to f.

In this proposition and below, the tuple coding function $\langle \rangle$ is assumed to satisfy

$$\langle a_0, ..., a_{k-1} \rangle \ge \max\{k, a_0, ..., a_{k-1}\}.$$

Outline: Let $\phi: \mathbb{N}^2 \to \mathbb{N}$ be a function with the following property: for every $n \in \mathbb{N}$,

- if $n = \langle 1, a, m \rangle$ then ϕ_n corresponds to
 - the function $S: \mathbb{N} \to \mathbb{N}$ if m = 0 and a = 1;
 - the function $P_{(i-1)/2}^a: \mathbb{N}^a \to \mathbb{N}$ if $m = \langle k, i \rangle$, a = k and i is odd;
 - the function $C_{i/2}^a: \mathbb{N}^a \to \mathbb{N}$ if $m = \langle k, i \rangle$, a = k and i is even.
- if $n = \langle 2, a, m \rangle$, where
 - $-m = \langle n_0, ..., n_k \rangle$ for some $k \ge 1$,
 - $-(n_0)_1 = k,$
 - $-(n_i)_1 = a \text{ for } i = 1, ..., k,$

then letting $g: \mathbb{N}^k \to \mathbb{N}$ be the function corresponding to ϕ_{n_0} and $h_i: \mathbb{N}^a \to \mathbb{N}$ the functions corresponding to ϕ_{n_i} , (for i = 1, ..., k), ϕ_n corresponds to the function obtained by *composition* from g and $h_0, ..., h_{k-1}$.

- if $n = \langle 3, a, m \rangle$, where
 - $-a \ge 1$
 - $-m = \langle n_0, n_1 \rangle$
 - $-(n_0)_1 = a 1,$
 - $-(n_1)_1 = a + 1,$

then letting $g: \mathbb{N}^{a-1} \to \mathbb{N}$ be the function corresponding to ϕ_{n_0} and $h: \mathbb{N}^{a+1} \to \mathbb{N}$ the function corresponding to ϕ_{n_1} , ϕ_n corresponds to the function obtained by *primitive* recursion from q and h.

Note that to calculate the value $\phi(n,l)$, one needs to know $\phi(n',l')$ for only finitely many (n',l') with either n' < n or l' < l. Use this and an idea similar to Dedekind's analysis of recursion to show that ϕ is recursive (i.e. one can define a recursive ϕ satisfying the property above).

- **5.** Prove the following:
 - (a) $Q \vdash (x + y) + z = x + (y + z);$
 - (b) Q + x + y = y + x;
 - (c) $\mathbf{Q} \neq \forall x (0 + x = x)$.