MATH 570: MATHEMATICAL LOGIC

HOMEWORK 7

Due date: Oct 15 (Wed)

1. Choose any two of the following facts about the Ackermann function and prove them:
(a) $A(n, x+y) \geq A(n, x)+y$;
(b) $n \geq 1 \Longrightarrow A(n+1, y)>A(n, y)+y$;
(c) $A(n+1, y) \geq A(n, y+1)$;
(d) $2 A(n, y)<A(n+2, y)$;
(e) $x<y \Longrightarrow A(n, x+y) \leq A(n+2, y)$.
2. Show that the graph of the Ackermann function is primitive recursive.

Hint: Use a similar argument to the proof that the Ackermann function is recursive, but bound your search using the value of the function.
Note: This implies that the Ackermann function is recursive.
3. (a) Show that the Ackermann function grows faster than any primitive recursive function; more precisely, prove that for any primitive recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$, there exists $n_{f} \in \mathbb{N}$ such that $f(\vec{x}) \leq A\left(n_{f},\|\vec{x}\|_{1}\right)$ for all $\vec{x} \in \mathbb{N}^{k}$, where $\|\vec{x}\|_{1}=x_{1}+\ldots+x_{n}$.
Hint: Use Problem 1.
(b) Conclude that the Ackermann function is not primitive recursive.
4. Prove the following proposition using the outline below.

Proposition. There exists a recursive function $\phi: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that for every $n, \phi_{n}:=$ $\phi(n, \cdot)$ is primitive recursive and for every $k \in \mathbb{N}$ and every primitive recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$, there is n such that $\forall \vec{a} \in \mathbb{N}^{k}$,

$$
f(\vec{a})=\phi_{n}(\langle\vec{a}\rangle) .
$$

In the latter case, we say that ϕ_{n} corresponds to f.
In this proposition and below, the tuple coding function \rangle is assumed to satisfy

$$
\left\langle a_{0}, \ldots, a_{k-1}\right\rangle \geq \max \left\{k, a_{0}, \ldots, a_{k-1}\right\}
$$

Outline: Let $\phi: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be a function with the following property: for every $n \in \mathbb{N}$,

- if $n=\langle 1, a, m\rangle$ then ϕ_{n} corresponds to
- the function $S: \mathbb{N} \rightarrow \mathbb{N}$ if $m=0$ and $a=1 ;$
- the function $P_{(i-1) / 2}^{a}: \mathbb{N}^{a} \rightarrow \mathbb{N}$ if $m=\langle k, i\rangle, a=k$ and i is odd;
- the function $C_{i / 2}^{a}: \mathbb{N}^{a} \rightarrow \mathbb{N}$ if $m=\langle k, i\rangle, a=k$ and i is even.
- if $n=\langle 2, a, m\rangle$, where
$-m=\left\langle n_{0}, \ldots, n_{k}\right\rangle$ for some $k \geq 1$,
$-\left(n_{0}\right)_{1}=k$,
$-\left(n_{i}\right)_{1}=a$ for $i=1, \ldots, k$,
then letting $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ be the function corresponding to $\phi_{n_{0}}$ and $h_{i}: \mathbb{N}^{a} \rightarrow \mathbb{N}$ the functions corresponding to $\phi_{n_{i}}$, (for $\left.i=1, \ldots, k\right), \phi_{n}$ corresponds to the function obtained by composition from g and h_{0}, \ldots, h_{k-1}.
- if $n=\langle 3, a, m\rangle$, where
$-a \geq 1$
$-m=\left\langle n_{0}, n_{1}\right\rangle$
$-\left(n_{0}\right)_{1}=a-1$,
$-\left(n_{1}\right)_{1}=a+1$,
then letting $g: \mathbb{N}^{a-1} \rightarrow \mathbb{N}$ be the function corresponding to $\phi_{n_{0}}$ and $h: \mathbb{N}^{a+1} \rightarrow \mathbb{N}$ the function corresponding to $\phi_{n_{1}}, \phi_{n}$ corresponds to the function obtained by primitive recursion from g and h.
Note that to calculate the value $\phi(n, l)$, one needs to know $\phi\left(n^{\prime}, l^{\prime}\right)$ for only finitely many (n^{\prime}, l^{\prime}) with either $n^{\prime}<n$ or $l^{\prime}<l$. Use this and an idea similar to Dedekind's analysis of recursion to show that ϕ is recursive (i.e. one can define a recursive ϕ satisfying the property above).

5. Prove the following:
(a) $\mathrm{Q} \Vdash(x+y)+z=x+(y+z)$;
(b) $\mathrm{Q} \nvdash x+y=y+x$;
(c) $\mathrm{Q} \nvdash \forall x(0+x=x)$.
