MATH 570: MATHEMATICAL LOGIC

HOMEWORK 6

Due date: Oct 8 (Wed)

- 1. Explain why Tarski's theorem (on $\mathsf{Th}(\mathbf{N})$ not being arithmetical) is equivalent to the fixed point lemma.
- 2. Sketch the proof of Gödel's Incompleteness Theorem. I will ask you to present it on the board.
- **3.** Prove Lemma 5.8(e) as well as Lemma 5.14(a,c,e).
- 4. Put $\mathbb{N}^{<\mathbb{N}} \coloneqq \bigcup_{l \in \mathbb{N}} \mathbb{N}^l$ and let $\langle \rangle : \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}$ be a primitive recursive coding of tuples; for example,

$$\langle n_1, ..., n_l \rangle = p_1^{n_1+1} ... p_l^{n_l+1}$$

where $l \in \mathbb{N}$ and p_i denotes the *i*th prime number. For $f : \mathbb{N}^{k+1} \to \mathbb{N}$, define

$$\bar{f}(\bar{a},n) = \langle f(\bar{a},0), f(\bar{a},1), ..., f(\bar{a},n-1) \rangle.$$

Given $h: \mathbb{N}^{k+2} \to \mathbb{N}$, let $f: \mathbb{N}^2 \to \mathbb{N}$ be defined by the identity

$$f(\vec{a},n) = h(\vec{a},f(\vec{a},n)).$$

Show that if h is primitive recursive, then so is f.

5. Let $g: \mathbb{N} \to \mathbb{N}, h: \mathbb{N}^3 \to \mathbb{N}, \tau: \mathbb{N}^2 \to \mathbb{N}$. We say that $f: \mathbb{N}^2 \to \mathbb{N}$ is defined by *nested* recursion from g, h, τ if for each $x, y \in \mathbb{N}$,

$$\begin{cases} f(0,y) = g(y) \\ f(x+1,y) = h(x,y,f(x,\tau(x,y))) \end{cases}$$

Show that if g, h, τ are primitive recursive, then so is f.