MATH 570: MATHEMATICAL LOGIC

HOMEWORK 5

Due date: Oct 1 (Wed)

1. Follow the steps below to show that the class \mathcal{D} of disconnected graphs is not axiomatizable (this would've been quite a tricky problem without the steps). Assume for contradiction that there is an axiomatization T of \mathcal{D} in some signature τ . Let $\tau' \coloneqq \tau \cup \{u, v\}$, where u, v are new constants and put

$$S \coloneqq \{\chi_n(u,v) : n \in \mathbb{N}\},\$$

where the formula $\chi_n(x, y)$ says that there is no path of length $\leq n$ between x and y (here x, y are variables).

- (i) Show that for every $\phi \in T$ there is $n \in \mathbb{N}$ such that $\chi_n(u, v) \models \phi$.
- (ii) Conclude that $\exists x \exists y \chi_n(x, y) \models \phi$, for ϕ and n as in (i).
- (iii) Put $S' \coloneqq \{\exists x \exists y \chi_n(x, y) : n \in \mathbb{N}\}$ and conclude that $S' \vDash T$, i.e. for every $\phi, S' \vDash \phi$. Explain why this is a contradiction.
- (iv) In a nutshell, what was the idea of the proof and what was the crucial step?
- 2. The following is a well known theorem of additive combinatorics:

Theorem (van der Waerden). Suppose \mathbb{Z} is finitely colored. Then one of the color classes contains arbitrarily long arithmetic progressions.

Use this theorem and the Compactness theorem to derive the following finitary version:

Theorem. Given any positive integers m and k, there exists $N \in \mathbb{N}$ such that whenever $\{0, 1, ..., N-1\}$ is colored with m colors, one of the color classes contains an arithmetic progression of length k.

- **3.** Let DLO denote the theory of dense linear orderings without endpoints as defined in Example 4.2(b) of the lecture notes.
 - (a) Show that DLO is \aleph_0 -categorical, and hence ($\mathbb{Q}, <$) is the only (up to isomorphism) countable dense linear ordering without endpoints.

HINT: Enumerate the two models and recursively construct a sequence of finite partial isomorphisms by going back and forth between the models.

(b) Let $\tau_n := (\langle c_1, ..., c_n \rangle)$, where c_i are constant symbols. Show that the theory

 $DLO_n = DLO \cup \{c_i < c_{i+1} : i < n\}$

is \aleph_0 -categorical. Conclude that DLO_n is complete.

(c) Let $\tau_{\infty} = (\langle c_i : i \in \mathbb{N} \rangle)$, where c_i are constant symbols. Show that the theory

$$DLO_{\infty} = DLO \cup \{c_i < c_{i+1} : i \in \mathbb{N}\}$$

is complete.

(d) Yet, show that DLO_{∞} has exactly three countable nonisomorphic models and hence is not \aleph_0 -categorical.

4. Let K be a field and let \overline{K} be an algebraic closure of K. A nonconstant polynomial $f \in K[X_1, ..., X_n]$ is called *irreducible over* K if whenever f = gh for some $g, h \in K[X_1, ..., X_n]$, either deg(g) = 0 or deg(h) = 0. Furthermore, f is called *absolutely irreducible* if it is irreducible over \overline{K} .

For example, the polynomial $X^2+1 \in \mathbb{R}[X]$ is irreducible over \mathbb{R} , but it is not absolutely irreducible since $X^2+1 = (X+i)(X-i)$ in $\mathbb{C}[X]$. On the other hand, $XY - 1 \in \mathbb{Q}[X,Y]$ is absolutely irreducible.

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and prove the following:

Theorem (Noether-Ostrowski Irreducibility Theorem). For $f \in \mathbb{Z}[X_1, ..., X_n]$ and prime p, let f_p denote the polynomial in $\mathbb{F}_p[X_1, ..., X_n]$ obtained by applying the canonical map $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ to the coefficients of f (i.e. moding out the coefficients by p). For all $f \in \mathbb{Z}[X_1, ..., X_n]$, f is absolutely irreducible (as an element of $\mathbb{Q}[X_1, ..., X_n]$) if and only if for sufficiently large primes p, f_p is absolutely irreducible (as an element of $\mathbb{F}_p[X_1, ..., X_n]$).

HINT: Your proof should be shorter than the statement of the problem. REMARK: The original algebraic proof of this theorem is quite involved!