MATH 570: MATHEMATICAL LOGIC

HOMEWORK 4

Due date: Sep 24 (Wed)

1. Show that if a theory has arbitrarily large finite models, then it has an infinite model.
2. (Weak Lefschetz Principle) Let ϕ be a $\tau_{\text {ring }}$-sentence. Show that if $\mathrm{ACF}_{0} \vDash \phi$, then for large enough primes $p, \mathrm{ACF}_{p} \vDash \phi$.
3. Prove that a graph is 3 -colorable if and only if so is every finite subgraph of it.

Hint: To be able to express the 3 -colorability property, add to the signature of graphs a unary relation symbol for each color. Also, add a name (constant symbol) for every vertex in the graph.
4. Show that the class of connected graphs is not axiomatizable.
5. Let $M \vDash P A$.
(a) Let $\mathbf{N}:=\left(\mathbb{N}, 0^{\mathbf{N}}, S^{\mathbf{N}},+^{\mathbf{N}},{ }^{\mathbf{N}}\right)$ denote the standard model of PA, i.e. the usual natural numbers. Show that there is a unique homomorphism $f: \mathbf{N} \rightarrow \mathbf{M}$ and this f is one-to-one, and hence (why?) is a τ_{a}-embedding.
(b) In the notation of (a), define the standard part of \mathbf{M} by

$$
\overline{\mathbb{N}}=f[\mathbb{N}]
$$

Show that if \mathbf{M} is nonstandard then $\overline{\mathbb{N}}$ is not definable in \mathbf{M}.
(c) (Overspill) Assume \mathbf{M} is nonstandard, and let $\phi(x, \vec{y})$ be a τ_{a}-formula, where \vec{y} is a k-vector and $\vec{a} \in M^{k}$. Show that if $\mathbf{M} \vDash \phi(n, \vec{a})$ for infinitely many $n \in \overline{\mathbb{N}}$, then there is $w \in M \backslash \overline{\mathbb{N}}$ such that $\mathbf{M} \vDash \phi(w, \vec{a})$. In other words, if a statement is true about infinitely many natural numbers, then it is true about an infinite number.
6. Give an example of structures $\mathbf{A}<\mathbf{B}$ that demonstrate the failure of the converse of Problem 1 of HW3.
7. This problem illustrates the (crazy) structure of the nonstandard models of PA. Let M be a nonstandard model of PA and let $\overline{\mathbb{N}}$ be its standard part. By replacing it with \mathbb{N}, we can assume without loss of generality that $\overline{\mathbb{N}}=\mathbb{N}$.
(a) For $a, b \in M$, let $|a-b|$ denote the unique $d \in M$ such that $a+d=b$ or $b+d=a$ (why does such exist?). For all $a, b \in M$, define

$$
a \sim b: \Leftrightarrow|a-b| \in \mathbb{N} .
$$

Show that \sim is an equivalence relation on M and that it is NOT definable in M.
(b) Put $Q=M / \sim$, so $Q=\{[a]: a \in M\}$, where $[a]$ denotes the equivalence class of a. Define the relation \leq_{Q} on Q as follows: for all $[a],[b] \in Q$,

$$
[a]<_{Q}[b] \Longleftrightarrow \exists c \in M \backslash \mathbb{N} \text { such that } a+c=b
$$

Show that $<_{Q}$ is well-defined (does not depend on the representatives a, b) and is a linear ordering on Q.
(c) Show that the ordering $\left(Q, \leq_{Q}\right)$ has a least element but no greatest element; moreover, show that it is a dense (in itself), i.e. for all $u, v \in Q$,

$$
u<_{Q} v \Longrightarrow \exists w\left(u<_{Q} w<_{Q} v\right)
$$

where $u<_{Q} v$ stands for $u \leq_{Q} v \wedge u \neq v$.

