MATH 570: MATHEMATICAL LOGIC

HOMEWORK 4

Due date: Sep 24 (Wed)

- 1. Show that if a theory has arbitrarily large finite models, then it has an infinite model.
- 2. (Weak Lefschetz Principle) Let ϕ be a τ_{ring} -sentence. Show that if $\mathsf{ACF}_0 \models \phi$, then for large enough primes p, $\mathsf{ACF}_p \models \phi$.
- **3.** Prove that a graph is 3-colorable if and only if so is every finite subgraph of it. HINT: To be able to express the 3-colorability property, add to the signature of graphs a unary relation symbol for each color. Also, add a name (constant symbol) for every vertex in the graph.
- 4. Show that the class of connected graphs is not axiomatizable.
- **5.** Let $\mathbf{M} \models \mathsf{PA}$.
 - (a) Let $\mathbf{N} \coloneqq (\mathbb{N}, 0^{\mathbf{N}}, S^{\mathbf{N}}, +^{\mathbf{N}}, \cdot^{\mathbf{N}})$ denote the standard model of PA, i.e. the usual natural numbers. Show that there is a unique homomorphism $f : \mathbf{N} \to \mathbf{M}$ and this f is one-to-one, and hence (why?) is a $\tau_{\mathbf{a}}$ -embedding.
 - (b) In the notation of (a), define the standard part of **M** by

$$\overline{\mathbb{N}} = f[\mathbb{N}].$$

Show that if \mathbf{M} is nonstandard then $\overline{\mathbb{N}}$ is not definable in \mathbf{M} .

- (c) (Overspill) Assume **M** is nonstandard, and let $\phi(x, \vec{y})$ be a τ_{a} -formula, where \vec{y} is a k-vector and $\vec{a} \in M^{k}$. Show that if $\mathbf{M} \models \phi(n, \vec{a})$ for infinitely many $n \in \overline{\mathbb{N}}$, then there is $w \in M \setminus \overline{\mathbb{N}}$ such that $\mathbf{M} \models \phi(w, \vec{a})$. In other words, if a statement is true about infinitely many natural numbers, then it is true about an infinite number.
- 6. Give an example of structures $\mathbf{A} \prec \mathbf{B}$ that demonstrate the failure of the converse of Problem 1 of HW3.
- 7. This problem illustrates the (crazy) structure of the nonstandard models of PA. Let \mathbf{M} be a nonstandard model of PA and let $\overline{\mathbb{N}}$ be its standard part. By replacing it with \mathbb{N} , we can assume without loss of generality that $\overline{\mathbb{N}} = \mathbb{N}$.
 - (a) For $a, b \in M$, let |a b| denote the unique $d \in M$ such that a + d = b or b + d = a (why does such exist?). For all $a, b \in M$, define

$$a \sim b : \Leftrightarrow |a - b| \in \mathbb{N}$$

Show that \sim is an equivalence relation on M and that it is NOT definable in \mathbf{M} .

(b) Put $Q = M/\sim$, so $Q = \{[a] : a \in M\}$, where [a] denotes the equivalence class of a. Define the relation \leq_Q on Q as follows: for all $[a], [b] \in Q$,

 $[a] <_Q [b] \iff \exists c \in M \setminus \mathbb{N} \text{ such that } a + c = b$

Show that $<_Q$ is well-defined (does not depend on the representatives a, b) and is a linear ordering on Q.

(c) Show that the ordering (Q, \leq_Q) has a least element but no greatest element; moreover, show that it is a dense (in itself), i.e. for all $u, v \in Q$,

 $u <_Q v \implies \exists w (u <_Q w <_Q v),$

where $u <_Q v$ stands for $u \leq_Q v \land u \neq v$.