MATH 570: MATHEMATICAL LOGIC

HOMEWORK 3

Due date: Sep 17 (Wed)

- **1.** Let $\mathbf{A} \subseteq \mathbf{B}$ and assume that for any finite $S \subseteq A$ and $b \in B$, there exists an automorphism f of \mathbf{B} that fixes S pointwise (i.e. f(a) = a for all $a \in S$) and $f(b) \in A$. Show that $\mathbf{A} \prec \mathbf{B}$.
- **2.** Show that $(\mathbb{Q}, <) < (\mathbb{R}, <)$. Conclude that $(\mathbb{Q}, <) \equiv (\mathbb{R}, <)$, but $(\mathbb{Q}, <) \neq (\mathbb{R}, <)$.

HINT: Use the previous problem.

- **3.** Conclude from the Löwenheim-Skolem theorem that any satisfiable theory T has a model of cardinality at most $\max\{|\tau|, \aleph_0\}$. In particular, if ZFC is satisfiable, then it has a countable model (although that model **M** would believe it contains sets of uncountable cardinality, e.g. $\mathbb{R}^{\mathbf{M}}$). Explain why this DOES NOT imply that ZFC is not satisfiable.
- 4. Prove the Constant Substitution lemma.
- 5. Show the following:
 - (a) (Associativity of +) $\mathsf{PA} \vdash \forall x \forall y \forall z [(x+y) + z = x + (y+z)],$
 - (b) $\mathsf{PA} \vdash \forall x(0 + x = x),$
 - (c) (Commutativity of +) $\mathsf{PA} \vdash \forall x \forall y (x + y = y + x)$.
- **6.** Show that a τ -theory T is semantically complete if and only if for any $\mathbf{A}, \mathbf{B} \models T, \mathbf{A} \equiv \mathbf{B}$.
- 7. For a fixed signature τ , let \mathcal{T} denote the set of all consistent complete theories and we equip this set with the topology generated by the sets $\langle \phi \rangle \coloneqq \{T \in \mathcal{T} : T \vdash \phi\}$, as described in the lecture notes. Show that for a τ -theory T (this T is not necessarily consistent or complete), the following are equivalent (i.e. can be deduced one from another):
 - (1) $T \vdash \phi$ implies that there is finite $T_0 \subseteq T$ with $T_0 \vdash \phi$.
 - (2) T being inconsistent implies that some finite $T_0 \subseteq T$ is inconsistent.
 - (3) \mathcal{T} is compact.

HINT: First prove (1) \Leftrightarrow (2). Then prove (2) \Leftrightarrow (3) using the easy fact that a topological space is compact if and only if every family of closed sets¹ with the finite intersection property² has a nonempty intersection. It helps to associate T with the family { $\langle \phi \rangle : \phi \in T$ } of clopen sets. The fact that any consistent theory has a consistent completion should also be useful.

8. Let \mathcal{T} be as in the previous problem. For every τ -sentence ϕ , put

$$\langle \phi \rangle = \{ T \in \mathcal{T} : T \vdash \phi \}.$$

(a) Prove that for $A \subseteq \mathcal{T}$, if

$$A = \bigcap_{i \in I} \langle \phi_i \rangle = \bigcup_{j \in J} \langle \psi_j \rangle,$$

¹Here, one can always assume (why?) that these are basic closed sets, i.e. complements of sets in a basis.

²A family of sets \mathcal{F} is said to have the *finite intersection property* if for every finite $\mathcal{F}_0 \subseteq \mathcal{F}$, $\bigcap_{A \in \mathcal{F}_0} A \neq \emptyset$.

then there are finite $I_0\subseteq I, J_0\subseteq J$ such that

$$A = \bigcap_{i \in I_0} \langle \phi_i \rangle = \bigcup_{j \in J_0} \langle \psi_j \rangle.$$

(b) Conclude from (a) that the only clopen (closed and open) sets in \mathcal{T} are of the form $\langle \phi \rangle$, where ϕ is a τ -sentence.