MATH 570: MATHEMATICAL LOGIC

HOMEWORK 11

Due date: Nov 19 (Wed)

- **1.** Call a set $A \subseteq \mathbb{Z}$ a difference set or a Δ -set if A is infinite and is of the form $\{x_n x_m : n > m\}$ for some sequence $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{Z}$ (possibly with repetitions). Call $C \subseteq \mathbb{Z}$ a Δ^* -set if it intersects every Δ -set; denote by Δ^* the collection of all Δ^* -sets.
 - (a) Show that Δ -sets enjoy the *Ramsey property*; namely, for any $A, B \subseteq \mathbb{Z}$, whenever $A \cup B$ contain a Δ -set, then at least one of A, B contains a Δ -set. HINT: Use the infinite Ramsey theorem.
 - (b) Conclude that Δ^* is a filter.
- **2.** Let X be a topological space and α an ultrafilter on X. Call $x \in X$ a *limit point* of α if every open neighborhood of x belongs to \mathcal{U} . Prove the following characterizations of Hausdorffness and compactness.
 - (a) X is Hausdorff if and only if every ultrafilter on X has at most one limit point.
 - (b) X is compact if and only if every ultrafilter on X has at least one limit point. HINT: For \Rightarrow , prove the contrapositive, and for \Leftarrow , show that any collection of closed sets with the finite intersection property has a nonempty intersection.