MATH 570: MATHEMATICAL LOGIC

HOMEWORK 10

Due date: Nov 12 (Wed)

1. We start by recalling the definition of the arithmetical hierarchy: for a class Γ of subsets of $\mathbb{N}^{<\infty}$, so that each set in Γ is a subset of \mathbb{N}^k for some $k \ge 1$, let

$$\exists^{\mathbb{N}}\Gamma \coloneqq \{\exists y R(\vec{x}, y) : R(\vec{x}, y) \in \Gamma\},\$$
$$\forall^{\mathbb{N}}\Gamma \coloneqq \{\forall y R(\vec{x}, y) : R(\vec{x}, y) \in \Gamma\},\$$
$$\Gamma \coloneqq \check{\Gamma} \coloneqq \{\neg R(\vec{x}) : R(\vec{x}) \in \Gamma\}.$$

Assuming the class Σ_n^0 is defined, put $\Pi_n^0 \coloneqq \neg \Sigma_n^0$, $\Sigma_{n+1}^0 \coloneqq \exists^{\mathbb{N}} \Pi_n^0$, and $\Delta_n^0 \coloneqq \Sigma_n^0 \cap \Pi_n^0$.

- (a) Show that $\Delta_n^0 \notin \Sigma_n^0 \notin \Delta_{n+1}^0$ and $\Delta_n^0 \notin \Pi_n^0 \notin \Delta_{n+1}^0$. Make sure to also show that inclusions, not just their strictness.
- (b) Show that $\bigcup_n \Sigma_n^0$ is precisely the class of all arithmetical sets.
- (c) Conclude Tarski's theorem that ${}^{\mathsf{Th}}(\mathbf{N}){}^{\mathsf{T}}$ is not arithmetical.
- **2.** Show that $(\mathbb{N}, 0, S)$ admits effective quantifier elimination. Conclude that the only definable sets are the finite and cofinite sets.
- **3.** Let $\tau = (0, 1, +, -, \cdot, <)$ and $\mathbf{Q} = (\mathbb{Q}, 0, 1, +, -, \cdot, <)$.
 - (a) Show that for every subset S ⊆ Q that is definable in Q by a quantifier free formula, there is q ∈ Q such that (q,∞) ⊆ S or (q,∞) ∩ S = Ø.
 HINT: Prove this by induction on the construction (length) of the quantifier-free formula defining S.
 - (b) Use (a) to show that $\mathsf{Th}(\mathbf{Q})$ does NOT admit quantifier elimination.
- 4. Show that the theory of vector spaces over Q is diagram-complete and hence admits q.e. Conclude that the only definable sets in any Q-vector space are the finite and cofinite sets.
- 5. Show that a theory is model-complete if and only if for every formula $\phi(\vec{x})$ there is an existential formula $\psi(\vec{x})$ such that $T \models [\phi(\vec{x}) \leftrightarrow \psi(\vec{x})]$. Conclude that the same is true with "existential" replaced with "universal".

HINT: For \Rightarrow direction, consider

$$\Gamma(\vec{x}) \coloneqq \{ \psi(\vec{x}) \ \tau\text{-formula} \colon T \vDash [\phi(\vec{x}) \to \psi(\vec{x})] \text{ and } T \vDash [\psi(\vec{x}) \leftrightarrow \theta(\vec{x})]$$
for some existential τ -formula $\theta(\vec{x}) \},$

and assuming for contradiction that $T \cup \Gamma(\vec{x}) \cup \{\neg \phi(\vec{x})\}$ has a model **A** with $\vec{a} \coloneqq \vec{x}^{\mathbf{A}}$, show that $T \cup \mathsf{Diag}(\mathbf{A}, A) \cup \{\phi(\vec{a})\}$ also has a model **B**.