MATH 570: MATHEMATICAL LOGIC

HOMEWORK 1

Due on Wednesday, Sep 3

- 1. Define appropriate signatures for
 - (a) vector spaces over \mathbb{Q} ;
 - (b) metric spaces.
- 2. (a) Show by an example that in the signature $\tau_{\text{group}} = (1, \cdot)$, a substructure of a group need not be a subgroup.
 - (b) Define a signature for groups different from the one above so that a substructure of a group is a subgroup.
- **3.** If $h : \mathbf{A} \to \mathbf{B}$ is a τ -homomorphism then the image h(A) is a universe of a substructure of \mathbf{B} .
- 4. Prove that if τ does not contain any relation symbols, then any bijective τ -homomorphism is a τ -isomorphism. (That's why this happens with groups and rings, but not with graphs or orderings.)
- **5.** A structure is called *rigid* if it has no automorphisms¹ other than the identity. Show that the structures $\mathbf{N} = (\mathbb{N}, 0, S, +, \cdot)$ and $\mathbf{Q} = (\mathbb{Q}, 0, 1, +, \cdot)$ are rigid.
- 6. A structure **M** is called *ultrahomogeneous* if given any isomorphism between two finitely generated substructures, it extends to an automorphism of the whole structure, i.e. if **A**, **B** are finitely generated substructures of **M** and $h : \mathbf{A} \to \mathbf{B}$ is an isomorphism, then there is an automorphism \overline{h} of **M** with $\overline{h} \supseteq h$. Show that $(\mathbb{Q}, <)$ is ultrahomogeneous. The same proof should also work to show that $(\mathbb{R}, <)$ is ultrahomogeneous.
- **7.** For a signature τ , a τ -sentence is a τ -formula that does not have free variables. For τ -structures \mathbf{A}, \mathbf{B} , we write $\mathbf{A} \equiv \mathbf{B}$ if for every τ -sentence ϕ , $\mathbf{A} \models \phi \iff \mathbf{B} \models \phi$. (a) Show that there is a τ_{group} -sentence ϕ such that

$$\mathbf{M} \models \phi \iff \mathbf{M} \simeq \mathbb{Z}/2\mathbb{Z}.$$

(b) More generally, let τ be a finite signature and **A** be a finite τ -structure. Show that there is a τ -sentence ϕ such that for any τ -structure **B**,

$$\mathbf{B} \vDash \phi \iff \mathbf{B} \simeq \mathbf{A}$$

In particular,

$$\mathbf{B} \equiv \mathbf{A} \iff \mathbf{B} \simeq \mathbf{A}.$$

¹isomorphism with itself