quiz 4 math228, classical geometry fall 2021

The quiz is worth 10 points. Justify all your claims rigourously.

(10 points) **1.** Consider an ellipse ε with foci F_1 , F_2 . Let P be a point outside the ellipse and let X, Y be points on ε such that PX and PY are tangent to ε .

Let F'_1 and F'_2 be the reflections of F_1 and F_2 through PX and PY respectively.

- **a.** Show that F'_1 lies on F_2X and that F'_2 lies on F_1Y .
- **b.** Show that the triangles $PF_1'F_2$ and PF_1F_2' are congruent.
- **c.** Conclude that $\angle F_1 P X = \angle F_2 P Y$.
- (5 points) 2. First, we recall the definition of the isogonal conjugate of a point.

bonus

Consider a triangle ABC and cevians AX, BY, CZ. Let J be the point of BC such that AJ is the angle bisector of $\angle BAC$. Let X be the point of BC such that $\dot{X} \neq X$ and $\angle JAX = \angle JA\dot{X}$. Similiarly, one defines \dot{Y} and \dot{Z} . One can show that if AX, BY, CZ are concurrent, then so are $A\dot{X}$, $B\dot{Y}$, $C\dot{Z}$. Given a point P not on ABC, P defines a set of concurrent cevians AX, BY, CZ, where the intersection of AX, BY, CZ is P. The *isogonal conjugate* of P is defined to be the point \dot{P} such that \dot{P} is the intersection of $A\dot{X}$, $B\dot{Y}$, $C\dot{Z}$ (as defined above).

An *inellipse* of ABC is an ellipse tangent to AB, AC and BC.

Using 1c, show that the foci F_1 and F_2 of an inellipse are isogonal conjugates.