practice final math228, classical geometry fall 2021

Justify all your claims rigorously.

1. Let ABCD be a cyclic quadrilateral. Prove that

 $|AC| \cdot |BD| = |AB| \cdot |CD| + |AD| \cdot |BC|.$

2. Given a triangle, show that the circumcircle of its orthic and of its medial triangles coincide.

3. Show that if ℓ is a line in an incidence geometry having a relation of betweeness, then there are infinitely many distinct points on ℓ .

4. Show that if ϵ is an ellipse and v is a hyperbola both having foci F_1 , F_2 , then ϵ and v intersect at right angles.

5. Given three noncollinear points

 $A = (0, 0), B = (B_x, B_y), C = (C_x, C_y),$

compute the coordinates of the orthocenter $H = (H_x, H_y)$ of the triangle *ABC*.

If you're feeling slightly more adventurous, you can also compute the coordinates of the circumcenter of ABC. Then, you can use it to compute the equation of the Euler line of ABC.

6. Draw the planar graph associated to the dodecahedron.







