midterm

math222, calculus III summer 2025

Justify all your claims rigorously. This exam is worth 33% of the grade for math222. Allotted time is 2 hours 20 minutes.

useful formulas.

Let $\vec{r}:(a,b)\to\mathbb{R}^3$ be a regular curve having no singular point of order 1. Then, the curvature κ and the torsion τ satisfy

$$\kappa(t) = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3} \qquad \tau(t) = \frac{(\vec{r}''(t) \times \vec{r}'(t)) \bullet \vec{r}'''(t)}{\|\vec{r}'(t) \times \vec{r}''(t)\|^2}$$

When \vec{r} is parametrized by arc-length, the Frenet-Serret equations are

$$\vec{t}'(s) = \kappa(s) \vec{n}(s)$$

$$\vec{n}'(s) = -\kappa(s) \vec{t}(s) - \tau(s) \vec{b}(s)$$

$$\vec{b}'(s) = \tau(s) \vec{n}(s)$$

where $\vec{t}(s)$ is the tangent vector, $\vec{n}(s)$ is the normal vector and $\vec{b}(s)$ is the binormal vector.

1. (8 points) Determine whether the following series are convergent or divergent. Specify the convergence criteria you are applying.

a.
$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 3}{3n^5 + 2n + 1}$$

b.
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^k}$$
 for $k \in \mathbb{R}_{>0}$ fixed

c.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^2 + \ln n}$$

d.
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

2. (8 points) Compute the interval of convergence of the following power series.

a.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{2^n} x^n$$

b.
$$\sum_{n=1}^{\infty} \frac{1}{n2^n} (x-5)^n$$

c.
$$\sum_{n=1}^{\infty} n^n (x+\pi)^n$$

d.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n} x^n$$

3. (6 points) Recall that, for a differentiable function $f:(c,d)\to\mathbb{R}$, its Taylor polynomial of degree N centred at $a\in(c,d)$ is defined by

$$T_N(x) = \sum_{n=0}^N \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

- **a.** For $f(x) = \tan x$, compute its Taylor polynomial $T_3(x)$ centred at $\pi/4$.
- **b.** For $f(x) = x^2 e^x$, compute its Taylor polynomial $T_4(x)$ centred at 1.
- **4.** (6 points) Fix $k \in \mathbb{Z}_{\geq 1}$ and let $h_k = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k}$. Using a telescoping sum, show that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+k)} = \frac{h_k}{k}.$$

5. (6 points) Let $a, b \in \mathbb{R}_{>0}$. Consider the curve $\overrightarrow{r} : \mathbb{R} \to \mathbb{R}^2$ defined by

$$\vec{r}(t) = (a\cos(t), b\sin(t)).$$

Compute the curvature of \vec{r} at $t = 0, \pi/2, \pi, 3\pi/2$.

6. (12 points) Consider the curve $\vec{r}:[0,\infty)\to\mathbb{R}^3$ defined by

$$\vec{r}(t) = (e^{-2t}\cos(t), e^{-2t}\sin(t), e^{-2t}).$$

- **a.** Show that the trace of \overrightarrow{r} lies on a cone.
- **b.** Give the arc-length parametrization of \vec{r} .
- **c.** Compute the curvature of \vec{r} .
- **d.** Compute the torsion of \vec{r} .