final math222, calculus III summer 2025

Justify all your claims rigorously. This exam is worth 55% of the grade for math222 and contains 8 questions. Allotted time is 3 hours.

This is a closed book exam, no material (e.g. calculator, dictionary, crib sheet) is permitted except pen/pencil and eraser.

useful formulas.

curves

Let \vec{r} : $(a, b) \to \mathbb{R}^3$ be a regular curve having no singular point of order 1. Then, the curvature κ and the torsion τ satisfy

$$\kappa(t) = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3} \qquad \tau(t) = \frac{(\vec{r}''(t) \times \vec{r}'(t)) \bullet \vec{r}'''(t)}{\|\vec{r}'(t) \times \vec{r}''(t)\|^2}$$

When \vec{r} is parametrized by arc-length, the Frenet-Serret equations are

$$\vec{t}'(s) = \kappa(s)\vec{n}(s)$$

$$\vec{n}'(s) = -\kappa(s)\vec{t}(s) - \tau(s)\vec{b}(s)$$

$$\vec{b}'(s) = \tau(s)\vec{n}(s)$$

where $\vec{t}(s)$ is the tangent vector, $\vec{n}(s)$ is the normal vector and $\vec{b}(s)$ is the binormal vector.

coordinate systems

— The polar coordinates in 2d are given by

$$x(r, \theta) = r \cos(\theta)$$
 $y(r, \theta) = r \sin(\theta)$

where $r \in \mathbb{R}_{>0}$ and $\theta \in [0, 2\pi)$.

— The spherical coordinates in 3d are given by

$$x(\rho, \theta, \phi) = \rho \cos(\theta) \sin(\phi)$$
 $y(\rho, \theta, \phi) = \rho \sin(\theta) \sin(\phi)$ $z(\rho, \theta, \phi) = \rho \cos(\phi)$

where $\rho \in \mathbb{R}_{\geq 0}$, $\theta \in [0, 2\pi)$ and $\phi \in [0, \pi]$.

1. (6 points) Compute the Taylor series centred at zero of the function $f(x) = xe^{2x}$ and find its interval of convergence.

2. (6 points) Evaluate the following integrals :

a.
$$\int_{0}^{\sqrt{2\pi}} \int_{y/2}^{\sqrt{2\pi}/2} \cos(x^2) \, dx \, dy$$

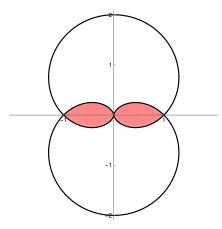
b.
$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \int_{\sqrt{x^2+y^2}}^{1} xy \, dz \, dx \, dy$$

3. (8 points) Find the minima and maxima of the function $f(x, y) = e^{-xy}$ subject to the constraint $x^2 + 4y^2 = 1$.

4. (8 points) Show that if z = f(x, y) and $x = r \cos(\theta)$, $y = r \sin(\theta)$, then

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{1}{r^2} \cdot \frac{\partial^2 z}{\partial \theta^2} + \frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial z}{\partial r}.$$

5. (8 points) Compute the area of the shaded region



where the two curves are given in polar coordinates by the equations $r = 1 + \sin(\theta)$ and $r = 1 - \sin(\theta)$.

6. (8 points) Find the critical points of the function

$$f(x, y) = x^3 - 6xy + 8y^3$$

and determine if the critical points are minima, maxima or saddle points.

7. (8 points) Consider the curve $\vec{r} : \mathbb{R} \to \mathbb{R}^3$ defined by

$$\vec{r}(t) = (\cos(t), \sin(t), \cos(2t)).$$

a. Show that the trace of \vec{r} lies on the cylinder $x^2 + y^2 = 1$ and on the hyperbolic paraboloid $z = x^2 - y^2$.

b. Show that the curvature of \vec{r} at t = 0 is $\sqrt{17}$.

8. (8 points) Compute the volume of the solid lying above the xy plane, inside the sphere $x^2 + y^2 + z^2 = 4$ and below the half-cone $z = \sqrt{x^2 + y^2}$.

