All questions denoted (*) are not crucial to the course, but they give a taste of further topics in mathematics. I strongly encourage you to attempt all problems in this tutorial, but do not worry if you get stuck!

- 1. Bases. Find a basis for the following \mathbb{F} -vector spaces or subspaces
 - (a) \mathbb{F}
 - (b) $\{(x, y, z, w) \in \mathbb{F}^4 : x y 2z = 0\} \subseteq \mathbb{F}^4$
 - (c) $\{(x, y, z) \in \mathbb{F}^3 : (x + y + z, x y z) = (0, 0)\} \subseteq \mathbb{F}^3$
 - (d) $\{(x, y, z) \in \mathbb{F}^3 : (x + y + z, -x y z) = (0, 0)\} \subseteq \mathbb{F}^3$
- 2. Lines and Planes. Let $\mathbb{F} = \mathbb{R}$. For (c),(d) in the previous question, conclude whether or not the subspaces form a line or a plane.
- 3. Intersections. Do the following intersect?
 - (a) The lines $\{t(-3,5,1) + (1,2,1) : t \in \mathbb{R}\}$ and $\{t(1,-4,-1) + (-1,3,1) : t \in \mathbb{R}\}.$
 - (b) The lines $\{t(6,5,-6)+(1,1,1): t \in \mathbb{R}\}$ and $\{t(2,1,-2)+(3,0,0): t \in \mathbb{R}\}.$
 - (c) The line $\{t(0,1,0): t \in \mathbb{R}\}$ and the plane x = 1
 - (d) The planes x + y + 2z = 0 and x + y + 2z = 3.
- 4. Projections. Given $v, w \in \mathbb{R}^n$, find $v_1, v_2 \in \mathbb{R}^n$ such that $v = v_1 + v_2$, where v_1 is parallel to w and v_2 is perpendicular to w. We write $v_1 = \operatorname{proj}_w(v)$. Find a gemoetric interpretation of v_1 in \mathbb{R}^2 . Hint: try $v_1 = \frac{v \cdot w}{||w||} \cdot \frac{w}{||w||}$
- 5. Compute $\operatorname{proj}_{v}(u)$ for the following $u, v \in \mathbb{R}^{n}$
 - (a) n = 1, u = 1, v = 2
 - (b) n = 2, u = (5, 6), v = (0, 1)
 - (c) $n = 2, u = (\cos\theta, \sin\theta), v = (\cos(\theta + \pi/2), \sin(\theta + \pi/2))$
 - (d) n = 3, u = (3, 5, 3), v = (2, 2, 2)
 - (e) n = 5, u = (1, 1, 1, 0, 0), v = (1, 2, 0, 0, 0)
- 6. Integrals. (*) Let V be a vector space of continuous real functions on an interval [a, b]. Show that $\langle f, g \rangle := \int_a^b f(x)g(x)dx$ defines a dot product on this space. Note: if you have never seen integrals before, you can ignore this question. I included it to give you an idea of different ways a dot product can be defined.