Note that some of the questions here are ones I did not have time to cover in earlier tutorials, I will cover them here in preparation for the midterm. I strongly encourage you to attempt all problems in this tutorial, but do not worry if you get stuck!

1. Imaginary parts. Let $a, b, c, d \in \mathbb{R}$ and $z \in \mathbb{C}$ such that $ad - bc \neq 0$ and $cz + d \neq 0$. Show that

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = (ad-bc)\frac{\operatorname{Im}(z)}{|cz+d|^2}$$

- 2. Vector Spaces. Prove whether or not following are \mathbb{F} -vector spaces for $\mathbb{F} = \mathbb{Q}, \mathbb{R}$ or \mathbb{C}
 - (a) $V = \mathbb{F}^X := \{f : X \to \mathbb{F}\}$, where z = f + g is defined pointwise, namely z(x) = f(x) + g(x), and the usual scalar multiplication.
 - (b) $V = \mathbb{F}$, with addition defined as $x + y := x \cdot y$, and the usual scalar multiplication.
- 3. *Subspaces.* Prove or disprove whether the following are subspaces of the indicated vector spaces:
 - (a) For $x_0, x_1 \in \mathbb{R}, \{p \in \mathbb{R}[x] : p(x_0) = x_1\} \subseteq \mathbb{R}[x].$
 - (b) $U = \{(x, y, z) \in \mathbb{R}^3 : (x + 2y, z x + y) = (0, 0)\} \subseteq \mathbb{R}^3.$
- 4. Polynomials. Recall that deg(p) denotes the degree of a non-zero polynomial p, that is the highest power of x in p. Let $p, q \in \mathbb{F}[x]$. Compute the following in terms of deg(p) and deg(q):
 - (a) $deg(p \cdot q)$.
 - (b) deg(p+q).
- 5. *Linear Independence*. Which of the following sets are linearly independent?

(a)
$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\\pi\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\e \end{pmatrix} \right\}$$

(b)
$$\left\{ \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\-3\\0 \end{pmatrix}, \begin{pmatrix} 5\\6\\-4\\5 \end{pmatrix} \right\}$$

6. Let V be an \mathbb{F} -vector space and let $\{v_1, v_2, \cdots, v_m\} \subseteq V$. Show that if

$$\operatorname{span}_{\mathbb{F}}\{v_1, v_2, \cdots, v_m\} = \operatorname{span}_{\mathbb{F}}\{v_2, v_3, \cdots, v_m\}$$

then $\{v_1, v_2, \cdots, v_m\} \subseteq V$ is linearly dependent.