Remember to make sure you understand what a question is asking before you answer it, and when in doubt, go back to the definitions. I strongly encourage you to attempt all problems in this tutorial, but do not worry if you get stuck!

- 1. Rationals. Let $\frac{p_1}{q_1}, \frac{p_2}{q_2} \in \mathbb{Q}$. Show that if $\frac{p_1}{q_1} = \frac{p_2}{q_2}$, for any $\frac{a}{b} \in \mathbb{Q}$, $\frac{p_1}{q_1} + \frac{a}{b} = \frac{p_2}{q_2} + \frac{a}{b}$ and $\frac{p_1}{q_1} \cdot \frac{a}{b} = \frac{p_2}{q_2} \cdot \frac{a}{b}$. Hint: $\frac{p_1}{q_1} = \frac{p_2}{q_2}$ if and only if $p_1q_2 p_2q_1 = 0$.
- 2. Primes. Show that for any prime number p, \sqrt{p} is not rational. Hint: the proof is very similar to the proof for $\sqrt{2}$.
- 3. *Inverses.* Find the multiplicative inverse and the norm of the following complex numbers:
 - (a) 1.
 - (b) *i*.
 - (c) 4 + 2i.
 - (d) $\pi 4i$.
 - (e) $\frac{1}{2} + \frac{7}{8}i$.
 - (f) $cos(\theta) + isin(\theta)$, where θ is some fixed real number.
- 4. Rotations.
 - (a) Let $z \in \mathbb{C}$. Show that if |z| = 1, there exists a $\theta \in [0, 2\pi)$ such that $z = \cos(\theta) + i\sin(\theta)$.
 - (b) Let w, z be two complex numbers with |w| = |z| = 1. Compute $w \cdot z$, and give a geometric interpretation. *Hint: recall that* $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$ and $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.
- 5. Triangles. Prove Pythagoras' Theorem for \mathbb{R}^3 , namely that the distance from the origin to a point (a, b, c) is $\sqrt{a^2 + b^2 + c^2}$.
- 6. *Geometry*. Define

$$\begin{split} ||(x,y)|| &:= \sqrt{x^2 + y^2} \\ ||(x,y,z)|| &:= \sqrt{x^2 + y^2 + z^2} \end{split}$$

Show the following:

- (a) The triangle inequality in \mathbb{R}^2 : $||u+v|| \le ||u|| + ||v||$.
- (b) The same inequality in \mathbb{R}^3 .
- (c) The parallelogram law in \mathbb{R}^2 : $2||u||^2+2||v||^2 = ||u+v||^2+||u-v||^2$. Hint: recall the law of cosines.

7. Imaginary parts. Let $a, b, c, d \in \mathbb{R}$ and $z \in \mathbb{C}$ such that $ad - bc \neq 0$ and $cz + d \neq 0$. Show that

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = (ad-bc)\frac{\operatorname{Im}(z)}{|cz+d|^2}$$