All questions denoted (*) are not crucial to the course, but they give a taste of further topics in mathematics. I strongly encourage you to attempt all problems in this tutorial, but do not worry if you get stuck!

- 1. *Natural numbers.* What is the difference between the following two statements? Which ones are true?
 - (a) $\forall x \in \mathbb{N}(x+1 \in \mathbb{N}).$
 - (b) $\forall x \in \mathbb{N} \exists y \in \mathbb{N} (x = y + 1).$
- 2. True or False. Which of the following statements are true?
 - (a) $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} (x + y = 0).$ (b) $\forall x \in \mathbb{N} \exists y \in \mathbb{N} (x + y = 0).$ (c) $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} (x \cdot y = 0).$ (d) $\forall x \in \mathbb{Q} \exists y \in \mathbb{Q} (x \cdot y = 1).$
 - (e) $\forall x \in \mathbb{R} \exists y \in \mathbb{Q}(x+y=0).$
 - (f) $\exists x \in \mathbb{N} \forall y \in \mathbb{N} (x \cdot y = y).$
 - (g) $\exists x \in \mathbb{Z} \forall y \in \mathbb{Z} (x \cdot y = 0).$
 - (h) $\exists x \in \mathbb{R} \forall y \in \mathbb{R} (x + y = 1).$
- 3. *Membership and subsets.* Which of the following is true? Which one is false?

(a)
$$\emptyset \in \left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$$

(b) $\emptyset \subseteq \left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$
(c) $\{\emptyset\} \in \left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$
(d) $\{\emptyset, \{\emptyset\}\} \in \left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$
(e) $\{\emptyset, \{\emptyset\}\} \subseteq \left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$
(f) $\{\{\emptyset\}\} \in \left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$

- 4. Distributivity. Prove the following:
 - (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
 - (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

These are called the distributivity laws for sets, and are very similar to the distributivity laws for addition and multiplication.

- 5. DeMorgan. Prove the following:
 - (a) $(A \cup B)^c = A^c \cap B^c$.
 - (b) $(A \cap B)^c = A^c \cup B^c$.
- 6. Functions. Let $f(x) = x^2$, $g(x) = cos(x) + e^x$, $h(x) = \frac{1}{x}$. Find the following, if they exist.
 - (a) f([-1,1]).
 - (b) $f^{-1}([0,1])$.
 - (c) $f^{-1}(\{1\})$.
 - (d) g([0,1]).
 - (e) $g^{-1}([-1,1])$.
 - (f) h(0).
 - (g) h((0,1]).
 - (h) $h^{-1}(\{0\})$.
- 7. Preimages. Let $f: A \to B$ and $A' \subseteq A, B' \subseteq B$. Prove the following:
 - (a) $A' \subseteq f^{-1}(f(A')).$
 - (b) $f(f^{-1}(B')) \subseteq B'$.
- 8. -jections. Try to find some injective, surjective, and bijective functions:
 - (a) from [0, 1] to [0, 1].
 - (b) from (0, 1) to (1, 2).
 - (c) from $[0, \pi]$ to (2, 3].
 - (d) from $\{0, 1, 2\}$ to $\{0, 1\}$.
 - (e) (*) from \mathbb{N} to \mathbb{Z} .
 - (f) (*)from \mathbb{N} to $\mathbb{N} \cup \left\{\frac{1}{2}\right\}$.

The solution to the last question is called Hilbert's hotel, a fundamental result in set theory.

9. (*) Ordered pairs. An ordered pair is defined $(x, y) := \{\{x\}, \{x, y\}\}$. Show that $(x_0, y_0) = (x_1, y_1)$ if and only if $x_0 = x_1$ and $y_0 = y_1$. Remember that sets are unordered!