quiz 2 math133, linear algebra and geometry summer 2022

Justify all your claims rigorously.

1. (subspaces)

a. Consider \mathbb{R}^4 as an $\mathbb{R}\text{-vector}$ space. Show that

$$\{(3x + y, x - y, 0, x) \in \mathbb{R}^4 ; x, y \in \mathbb{R}\}$$

is a subspace of \mathbb{R}^4 .

b. Let $c \in \mathbb{R}$ and consider \mathbb{R}^3 as an \mathbb{R} -vector space. Show that

$$\{(x, y, z) \in \mathbb{R}^3 ; x + y + z = c\}$$

is a subspace of \mathbb{R}^3 if and only if c = 0.

2. (linear independence) Let $t \in \mathbb{R}$ and consider $u_1, u_2 \in \mathbb{R}^2$, where $u_1 = (t, 1)$ and $u_2 = (1, t)$. For which t are u_1 and u_2 linearly independent?

3. (span) Let V be an \mathbb{F} -vector space where $\mathbb{F} = \mathbb{Q}$, \mathbb{R} or \mathbb{C} . and let $u_1, u_2 \in V$. Show that

 $\operatorname{span}_{\mathbb{F}}\{u_1, u_2\} = \operatorname{span}_{\mathbb{F}}\{u_1 + u_2, u_1 - 2u_2\}.$