quiz 3/4 math133, linear algebra and geometry summer 2022

Justify all your claims rigorously.

1. Consider the set of quaternions

 $\mathbb{H} = \{a + bi + cj + dk ; a, b, c, d \in \mathbb{R}\}$

as an $\mathbb R\text{-vector}$ space. Remember that the multiplication table for $\mathbb H$ is the following :

С	i	j	k
i	-1	k	-j
j	- <i>k</i>	-1	i
k	j	-i	-1

Consider the basis $\mathcal{B} = \{1, i, j, k\}$ for \mathbb{H} . Fix $q \in \mathbb{H}$ a non-zero quaternion such that |q| = 1.

- **a.** Show that the map $T : \mathbb{H} \to \mathbb{H}$ given by $T(p) = q \cdot p \cdot q^{-1}$ is \mathbb{R} -linear.
- **b.** Compute the matrix representation of \mathcal{T} in the bases \mathcal{B} and \mathcal{B} , namely $\begin{bmatrix} \mathcal{T} \end{bmatrix} \in \mathbf{M}_{4\times 4}(\mathbb{R})$.

2. Consider \mathbb{R}^n as an \mathbb{R} -vector space. Fix a non-zero vector $v \in \mathbb{R}^n$. As defined in tutorial 5, for $u \in \mathbb{R}^n$, denote $\operatorname{proj}_{v}(u) = \frac{u \cdot v}{\|v\|^2} v$.

- **a.** Show that $\operatorname{proj}_{v} : \mathbb{R}^{n} \to \mathbb{R}^{n}$ is a linear map.
- **b.** Compute the matrix representation of proj_{v} in the canonical basis of \mathbb{R}^{n} .
- **c.** Compute dim Ker proj_{v} .

3. Consider $\mathbf{M}_{m \times n}(\mathbb{F})$ as an \mathbb{F} -vector space. For $1 \le i \le m$ and $1 \le j \le n$, let E_{ij} be the matrix having every coefficient equal to zero except at position i, j (*i*th row and *j*th column) where the coefficient is equal to 1. For example, if m = 3, n = 4, one has

$$E_{23} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- **a.** Show that the elements E_{ij} for $1 \le i \le m$ and $1 \le j \le n$ form a basis of $\mathbf{M}_{m \times n}(\mathbb{F})$ and compute dim $\mathbf{M}_{m \times n}(\mathbb{F})$.
- **b.** Suppose m = n. Compute $E_{ij} \cdot E_{k\ell}$ in terms of the basis given in part **a**.

4. Let V be a finite dimensional \mathbb{F} -vector space. Let U be a subspace of V. Show that there exists a linear map $T: V \to V$ such that Ker T = U.