practice midterm

math133, linear algebra and geometry summer 2022

Justify all your claims rigorously.

1. Compute the following product of two polynomials :

$$(X-1)(X^5 + X^4 + X^3 + X^2 + X + 1).$$

Conclude that for $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, one has

$$z^5 + z^4 + z^3 + z^2 + z + 1 = 0.$$

2. Show that if V, W are two \mathbb{F} -vector spaces, then the cartesian product

$$V \times W = \{(v, w) ; v \in V, w \in W\}$$

endowed with the two operations defined by

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $\lambda(v, w) = (\lambda v, \lambda w)$ $v, v_1, v_2 \in V, w, w_1, w_2 \in W, \lambda \in \mathbb{F}$

is an \mathbb{F} -vector space.

3. Let V be an \mathbb{F} -vector space. Show that if $U, W \subset V$ are subspaces, then $U \cap W$ is a subspace of V.

4. Let V be an \mathbb{F} -vector space, let $v_1, \ldots, v_m \in V$ be linearly independent and let $w \in V$. Show that if $v_1 + w, \ldots, v_m + w$ are linearly dependent, then $w \in \text{span}_{\mathbb{F}}\{v_1, \ldots, v_m\}$. Is the converse true, namely if $w \in \text{span}_{\mathbb{F}}\{v_1, \ldots, v_m\}$, then $v_1 + w, \ldots, v_m + w$ are linearly dependent?

5. Let $p(X), q(X) \in \mathbb{R}[X]$ such that p(X), q(X) are linearly independent. When are the three polynomials p(X), q(X) and $p(X) \cdot q(X)$ linearly independent? When are they linearly dependent?

6. Give a basis of the subspace $\{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0\}$ and show that it is in fact a basis.

7. Let *V*, *W* be two finite dimensional vector spaces. Recall from question **2** that $V \times W$ also has a vector space structure. Show that $V \times W$ is finite dimensional and compute dim $(V \times W)$ in terms of dim *V* and dim *W*.