
 

Phonotactic learning without a priori constraints:  
Arabic root cooccurrence restrictions revisited 

 
John Alderete1, Paul Tupper1, Stefan A. Frisch2 

Simon Fraser University1, University of South Florida2 
 

1   Introduction 
Much work in generative linguistics is nativist in the sense that the fundamental 
mechanisms for computing linguistic processes are assumed to be innate. In 
Optimality Theory (OT), for example, the building blocks of grammar, well-
formedness constraints, are universal and innate ((Prince & Smolensky 
1993/2004), (McCarthy & Prince 1999)). Cross-linguistic differences are 
accounted for by reranking these fixed universal constraints. While it is fairly 
certain that some aspects of language are innate in humans, it is also far from 
clear which aspects are innate and which simply evolve in the natural course of 
language development. Results from a host of different research paradigms have 
shown that many language processes can be learned directly from the statistical 
structure of experience ((Elman et al. 1996), (Spencer et al. 2009)), including 
nontrivial ones like dependencies between nonadjacent elements ((Gomez 2002), 
(Newport & Aslin 2004)). Perhaps at least some of the constraints of OT 
grammars can be learned from experience too.  

In a sense, recent work in computational language learning in phonology 
anticipates this issue. Initial computational work in OT showed that, with a finite 
set of fixed constraints, complex linguistic systems can be learned within an OT 
architecture ((Tesar 1995), (Tesar & Smolensky 2000)). Related research 
paradigms, including the Gradual Learning Algorithm ((Boersma 1998), 
(Boersma & Hayes 2001)) and Harmonic Grammar ((Legendre et al. 1990), (Pater 
2009)), modify how constraint-based grammars predict output forms, but they 
retain the assumption that the constraints themselves are given in advance of 
learning. More recently, however, (Hayes & Wilson 2008) call into question this 
assumption. In their theory, constraints can be induced from the data by search 
heuristics that select a small number of highly predictive constraints from a quasi-
infinite constraint set. While this approach is used more as an inductive baseline 
to motivate the introduction of more abstract structures, it is notable in that it 
makes learning the constraints themselves a nontrivial part of learning. 

We seek to continue this line of research by providing an additional 
mechanism of inducing constraints from data. In particular, we develop a 
connectionist architecture for learning phonotactic constraints. Below we 
motivate this cognitive architecture and apply it to the problem of learning root 
occurrence restrictions, or ‘OCP effects’, in Arabic. Arabic is chosen because 
large datasets exist, i.e., root lists and psycholinguistic experiments (Frisch et al. 
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2000), that enable strong tests of model performance. Also, Arabic exhibits 
graded phonotactic patterns that make it a good test case for any learning system 
designed to induce constraints. The principal result reported below is that the 
graded phonotactic patterns of Arabic consonant phonology can be learned as the 
gradual tuning of subsymbolic constraints in a connectionist network. Learning of 
OCP constraints in a connectionist network therefore presents a new way of 
inducing constraints from data. 

The rest of this article is structured as follows. Section 2 provides a summary 
of the core empirical facts, namely the restrictions in Arabic against roots 
containing homorganic consonants. Section 3 provides some formal background, 
explaining what constraints are in connectionist networks. In section 4, a 
feedforward multi-layer network is developed for learning phonotactic 
restrictions, and it is shown to capture the core descriptive and psycholinguistic 
facts of Arabic consonant phonology. Section 5 develops a second connectionist 
network using recurrent connections to show that the learning results do not 
depend on the feedforward nature of the first network. The last section 
summarizes and makes a few concluding remarks based on our findings. 

2   Root cooccurrence restrictions in Arabic 
Arabic roots exhibit a phonological pattern in which there is a strong tendency 
against two adjacent consonants having the same place of articulation. This 
generalization was first clarified in (Greenberg 1950) and explored further in 
((McCarthy 1988), (McCarthy 1994) and (Pierrehumbert 1993)) with different 
root lists. Table 1 below, from (Frisch et al. 2004), shows the consonant co-
occurrence in trilateral roots (excluding glides), the most common type of root 
that has been the focus of most prior research. It organizes Arabic consonants into 
a set of homorganic natural classes typically assumed in prior work, following the 
autosegmental analysis of (McCarthy 1988). We refer to these classes below 
(excluding the uvulars) as ‘same-place’ classes, because they are not the same as 
the natural classes defined by major place features. As explained below, there are 
three separate coronal same-place classes, and uvulars are merged with both 
dorsal and pharyngeal classes. The rate of cooccurrence of two consonants in a 
root is quantified as a so-called O/E ratio, or the ratio of observed consonant pairs 
to the number of consonants that would be expected to occur by chance 
(Pierrehumbert 1993). The O/E ratios for sequences of adjacent consonants in a 
root, i.e., the first two or last two consonants, are shown in Table 1 from a dataset 
of 2674 triliteral verb roots compiled originally in (Pierrehumbert 1993) and 
based on the Hans Wehr Arabic-English Dictionary (Cowan 1979).  

An O/E ratio of less than 1 indicates underrepresentation in the dataset, as 
shown in all the shaded cells for all same-place consonant pairs. Uvulars are also 
significantly underrepresented when they combine with either dorsals or 
pharyngeals. For this reason, uvulars are generally assumed to be in both same-
place classes. While not as strong an effect, coronal stop + fricative pairs are also 



 

underrepresented with an O/E of 0.52. Thus, after merging uvulars with dorsals 
and pharyngeals, there are six same-place classes in Arabic root phonotactics. 
 
Table 1: Co-occurrence of adjacent consonants in Arabic triliteral roots 

 Lab Cor Stop Cor Fric Dorsal Uvular Phar Cor Son 

Labial [	
  b	
  f	
  m	
  ]	
   0.00 1.37 1.31 1.15 1.35 1.17 1.18 
Cor Stop [	
  t	
  d	
  tˁ	
  dˁ	
  ]	
    0.14 0.52 0.80 1.43 1.25 1.23 
Cor Fric [	
  θ	
  ð	
  s	
  z	
  sˁ	
  zˁ	
  ʃ	
  ]	
     0.04 1.16 1.41 1.26 1.21 
Dorsal [	
  k	
  g	
  q	
  ]	
      0.02 0.0 1.04 1.48 
Uvular [	
  χ	
  ʁ	
  ]	
       0.00 0.07 1.39 
Pharyngeal [	
  ħ	
  ʕ	
  h	
  ʔ	
  ]	
        0.06 1.26 
Cor Son [	
  l	
  r	
  n	
  ]	
         0.06 

 
This restriction against same-place pairs is also found in non-adjacent consonants, 
e.g., the first and third consonant of a triliteral root, but the effect is not as strong 
((Greenberg 1950), (Pierrehumbert 1993), (Frisch et al. 2004).  

The above data shows that roots that contain two same-place consonants are in 
general prohibited. However, two identical consonants are commonly found in the 
second and third consonantal positions in triliteral roots, e.g., madad ‘stretch’. 
Most prior work, and the table above, follow (McCarthy, 1986) in excluding roots 
with pairs of identical segments in counts of same-place consonant pairs because 
they assume an analysis in which the second and third consonants are derived in 
some sense (e.g., by autosegmental double-linking or reduplicative copying) from 
the same underlying consonant. So the two identical surface consonants do not 
actually constitute a consonant pair for the purpose of the restriction against 
homorganic consonants ((Gafos 1998), (Rose 2000), (Frisch et al. 2004)). We 
follow this work for the sake of concreteness, and exclude identical segments in 
C2C3 position from the set of patterns that our model is designed to account for.  

Our simulations below are tested directly on how well they approximate 
Arabic speakers’ responses to a wordlikeness experiment. In order to compare our 
results with this data, we sketch the principal questions and experimental design 
of (Frisch and Zawaydeh, 2001) so detailed comparisons can be made. In this 
study, 24 native speakers of Jordanian Arabic were given a set of nonsense words 
that contained triliteral roots. Subjects were asked to rate these words on a 7 point 
scale for the overall acceptability of the form, which was the dependent variable 
in all experiments. The larger finding was that the constraint against homorganic 
consonants, dubbed the ‘OCP’ for Obligatory Contour Principle, has a significant 
effect on subjects’ ratings that cannot be attributed to certain lexical statistical 
effects or accidental gaps. Furthermore, subjects’ ratings of these words fall on a 
gradient that correlates with featural similarity of the two consonants. The specific 
research questions, design, and results of each experiment are given below to 
allow for explicit comparisons in sections 4 and 5. 

 



 

Experiment 1. Is the homorganic cooccurrence restriction (a.k.a., the OCP) 
psychologically real, and not just an effect of lexical statistics? 
• independent variables: OCP violations, expected probability, neighborhood density 
• results/conclusion: significant effect of OCP found on wordlikeness ratings, no other 

effects found and no interactions; OCP accounts for approximately 30% of subject 
variability 

Experiment 2. Do subject ratings distinguish between systematic gaps (OCP 
violations) and accidental gaps (non-OCP violating, rare consonant 
combinations)? 
• controlled variables: expected probability and neighborhood density 
• variables balanced in stimuli set: bigram probability 
• result/conclusion: OCP had a significant effect on wordlikeness ratings, accounting for 

approximately 21% of subject variability; so subjects distinguish between systematic 
and accidental gaps 

Experiment 3. Do subject acceptability judgments exhibit different degrees of 
OCP violation that correlate with different degrees of featural similarity? 
• variables balanced in the stimuli: expected probability, neighborhood density, and 

bigram probability 
• independent variable: similarity of phonological features 
• result/conclusion: similarity had a significant effect on wordlikeness rating 

(approximately 20% of subject variability); OCP is gradient 

3   Constraints in connectionist grammars 
Connectionist grammars are information processing models that take inputs and 
generate outputs, and so they can be compared with symbol-manipulating 
grammars as generative models. The well-known analysis of the English past 
tense in (McClelland & Rumelhart 1986), for example, generates past tense verbs 
from English present forms by computing activation patterns of inflected forms in 
a multi-layer node network. Connectionist networks, ‘c-nets’, have also been 
developed that capture the facts of traditional problems in phonology. For 
example, (Hare 1990) designed a sequential network to capture some of the core 
facts of Hungarian vowel harmony. Hare showed that by using a context layer, 
which in a sense remembers the structure of preceding elements (Jordan 1991), 
the c-net could explain the fact that the more similar/closer the target and trigger 
are, the stronger the assimilatory effect. Another example is the c-net developed 
in (Legendre et al. 2006) to account for the now classic OT analysis of Tashlhiyt 
Berber syllabification (see (Prince & Smolensky 1993/2004)). This c-net takes a 
sequence of segments as input, represented as input patterns of sonority classes, 
and the dynamics of a recurrent network assigns input segments to the proper 
syllable positions, peak and margin.  

One can view the computation of activation patterns in a c-net as constraint 
satisfaction, but satisfaction of subsymbolic constraints rather than the symbolic 
constraints familiar from standard Optimality Theory ((Smolensky 1988), 
(Smolensky & Legendre 2006b)). Subsymbolic constraints are defined as the 



 

connection weights between nodes. A subsymbolic constraint can be a single 
connection, or sets of connections within the larger node network. If the 
connection between two units is positive, the unit sending information tries to put 
the unit immediately downstream into the same positive state it is in. The 
constraint is in a sense satisfied if the state of the receiving node resembles the 
state of the sending node. If the connection is negative, the sending unit tries to 
put the receiving unit in the opposite state, so negative weights are satisfied by 
inducing opposite activation states downstream. Like constraint satisfaction in 
OT, not all constraints can be satisfied in c-nets. But as activity flows through the 
network, or cycles through recurrent networks, the activation values of individual 
units will change in a way that better satisfies these positive and negative 
constraints. This is the principle of Harmony Maximization of ((Legendre et al. 
1990), (Smolensky & Legendre 2006a)).  

Subsymbolic constraints are thus not global assessments of some property of a 
symbolic representation. They are the combined effect of microstructure links that 
can be scattered across the network. The problem of ‘learning the constraints’ can 
thus be characterized more precisely as a problem of learning the correct 
configuration of connection weights. We develop this approach to learning 
constraints from data by building two c-nets that capture OCP-Place effects. 

4   A multi-layer connectionist network for learning phonotactics 
Our first c-net is modeled after multi-layer networks that take linguistic forms as 
input and output a single score, as in the c-net developed in (Ramsey et al., 1990) 
to simulate learning of semantic truth values (i.e., ‘0’ or ‘1’) for syntactic phrase 
structure trees. Our multi-layer network, dubbed the Assessor Network (AN), is a 
deterministic feedforward network that accepts as input a triliteral root and returns 
an acceptability rating, i.e., a value between -1 and 1. The input to the AN, and 
the Recurrent Network described below in section 4, is a sequence of three 
segments, where each segment is a string of 17 values, either -1, 0, or 1, 
corresponding to the feature specifications assumed in (Frisch et al., 2004). Each 
triliteral root is thus a distributed representation of the featural make-up of the 
three consonant root, expressed as a vector of 3x17=51 elements. The AN is a 
three layer network with this input layer, a hidden layer of a certain number of 
nodes (1, 2, 5 or 10, which was varied to test the model’s performance), and the 
output layer constituted by a single node that yields the acceptability rating. The 
output of the AN, or the activation state of the final output node, is comparable to 
the relativized acceptability score of Harmonic Grammar (Coetzee & Pater 2008) 
and the maxent values of MaxEnt Grammar (Hayes & Wilson 2008). 

All input nodes are connected to all hidden layer nodes and all hidden layer 
nodes are connected to the output node. For each node in the hidden and output 
layer, the activation is given by: 
 

(1) ai = σ (∑j wij aj + bi) 
 



 

where wij is the strength of the connection from node j to node i, and aj is the 
activation of node j, and bi is the bias on node i. σ is the sigmoid logistic function 
commonly used in connectionist modeling. 

The AN only makes sensible classifications of the data when it has been 
trained. The AN was trained in a protocol that attempts to approximate the type of 
exposure that Arabic speakers confront in learning. In particular, a simplified 
production system was created that takes actual Arabic roots as input, and 
attempts to return an identical root as output. This system is noisy, however, in 
the sense that random variations in the activations patterns of output nodes can 
produce non-identical roots by replacing some or all consonants. These ‘errors’ 
are used in learning, as well as correctly reproduced output forms. In particular, if 
the production system gives the AN a faithfully reproduced form, all connection 
weights and biases in the AN are adjusted such that the AN gets closer to 
outputting a ‘1’ for that form. If instead the production system gives the AN a 
form that differs from the actual Arabic word it used as input, the form supplied to 
the AN is classified as an error and all connection weights and biases in the AN 
are adjusted so that it outputs a ‘-1’ for this form. In this way, the training is 
realistic in the sense that it is composed exclusively of actual Arabic roots or 
errors based on actual roots. The training regime is thus comparable to the role of 
production in many constraint-based learning systems (e.g., (Tesar & Smolensky 
2000), (Tesar 2004)) that also use production errors as evidence in learning.  

The specific training protocol for the AN was as follows. All weights and 
biases were initialized with small random values. Training took place over a run 
of 107 epochs, where each epoch involved presenting the AN a single output of 
the production system. The actual roots the AN was trained on, via the simplified 
production system, were a set of 3,489 triliteral roots from (Buckwalter 1997). 
Quadraliteral and triliterals with final geminates were excluded because they 
involve problems that are orthogonal to our study. The values of wij and bi in (1) 
above were then computed using backpropagation (Rumelhart & McClelland 
1986): these values were adjusted such that the AN gets closer to producing a ‘-1’ 
for error forms and ‘+1’ for target forms, as explained above. 

We first give an overview of the network’s performance by showing how it 
classifies all possible roots. Figure 1 below illustrates the rating results for an 
Assessor Network with five hidden layer units, given input trained on the 
Buckwalter root list. The first observation to make is that, while the ratings for the 
actual roots (a) overlap with the ratings for all possible roots (b) (n = 283 = 
21,952), the ratings for the middle 50% of the actual words is centered around the 
top of the middle 50% of the ratings for all possible roots (compare the first and 
second boxplots), indicating that network has learned to assign higher scores to 
the words that it has been exposed to. Second, the opposition between the third 
(OCP compliant roots (c), from Frisch and Zawaydeh’s Experiment 1) and fourth 
boxplots (OCP violating roots (d), same source) shows that the network has 
effectively learned the OCP. The middle 50% of the ratings for the OCP 
compliant roots is well above the middle 50% of the ratings for the OCP violating 



 

roots. Thus, viewed globally, the Assessor has a strong tendency to rank roots that 
violate the OCP lower than those that do not. 

 
Figure 1: Acceptability scores for one trial of Assessor Network with five hidden nodes. Box 
plots indicate minimum, first quartile, median, third quartile and maximum scores for (a) all 
attested roots, (b) all possible roots, (c) OCP compliant roots, (d) OCP violating roots. 

 
The Assessor Network assigns acceptability scores to nonactual roots, so its 

assessment of nonsense words can be compared directly to the native speakers’ 
judgments of nonsense words. To do this, we conducted the same tests from 
(Frisch & Zawaydeh 2001), but substituted Assessor Network acceptability 
ratings for their wordlikeness ratings. The hidden layer of the Assessor Network 
can have any number of nodes, but we have investigated learning with hidden 
layers of between 1 and 10 hidden layer units and found that a range between 2 
and 5 units produces effects parallel to the judgment data. Table 2 gives the 
results of a 5 unit hidden layer on three separate learning trials. All effects with 
significance at p < .05 are reported with the percentage of the variation accounted 
for by this effect. Under the Experiment 1 column, which used most of the 
stimuli, the correlation coefficients between AN outputs and Frisch and 
Zawaydeh’s wordlikeness data (mean rating) is given as a gross measure of the 
correlation between the two datasets. 

The results are qualitatively parallel to the Frisch and Zawaydeh’s findings. In 
particular, in Frisch and Zawaydeh’s experiment 1, OCP violation was the only 
statistically significant factor on wordlikeness and it still had a significant effect 
when bigram probability was controlled for in experiment 2. The results shown in 
Table 2 are therefore consistent with all these experimental findings, as OCP 
violation was the only significant factor in experiments 1 and 2, and similarity 



 

was a significant factor in two of the three trials of experiment 3. We note that the 
percentage of the acceptability explained by the OCP is slightly higher than with 
the judgement data in experiments 1 and 2, but we believe that a perfect match of 
the two datasets is not required to demonstrate the learning of OCP-Place 
constraints. A c-net model and learning protocol could be constructed to produce 
a better quantitative match with the experimental data through manipulation of 
model parameters and additional training. The important finding is therefore that a 
relatively simple set of parameters reproduces all of the statistically significant 
generalizations in the behavioral data. 
 
Table 2: Significant effects on acceptability from factors in Frisch & Zawaydeh 2001 
experiments; cells show factor, percentage explained, and for experiment 1, correlation with 
the wordlikeness judgement data 

 Experiment 1, p<0.001 Experiment 2, p<0.001 Experiment 3, p<0.05 
Trial 1 OCP 44%; r=0.37 OCP 47% similarity 5% (not sig.) 
Trial 2 OCP 47%; r=0.48 OCP 43%  similarity 9%  
Trial 3 OCP 48%, r=0.40 OCP 31% similarity 17% 

 
One of the common criticisms of connectionist networks is that it is difficult 

to understand the nature of the functions they compute because their subsymbolic 
structure is not easily accessible to analysis. How do we know that our c-net is 
working in a way parallel to OCP-Place constraints? One way to extract rule-like 
symbolic behavior from the rich dataset provided by our c-net is to use 
Classification and Regression Trees (CART). CART analysis is a commonly used 
statistical technique for imposing categorical structure on large and ‘messy’ 
datasets. We applied the following method to produce CART trees for the five-
node network described above. For each hidden node in the trained network, we 
applied the classregtree function of Matlab in order to produce decision 
trees that would predict the output from the input. The inputs for CART analysis 
were the 21,952 possible triliteral roots (i.e., both actual and nonactual roots). The 
specific variables for these inputs were just the 51 feature specifications used by 
the c-net to describe each triliteral root (i.e., distributed representations for 3 
segments × 17 features). The output variables were the activation values for a 
particular hidden node, rounded to -1 or 1, a ‘1’ meaning that the node judges the 
form favorably, ‘-1’ unfavorably.  

The algorithm begins by identifying the single input variable, i.e., a 
phonological feature in a particular position, that does best at predicting the 
outputs. The data is then partitioned into two sets based on the value of this input 
feature. This procedure is then repeated recursively on each of the two sets, 
selecting a new input variable (=another feature in a C slot) to partition each set. 
We set the algorithm to stop when a set has fewer than 1,000 roots or else when 
all the output variables in a set are identical. At this point each terminal node is 
labeled either a ‘-1’ or a ‘1’, depending on which output variable predominates in 
the node. Once this is complete, the tree can be used to predict the output for a 



 

given input by descending the tree according to the input variables and then using 
the label for the resulting terminal node.  

We applied this procedure of generating CARTs for all five hidden layer 
nodes, for three different trials. With one exception, each of the hidden nodes 
implements an approximation of one of the six OCP-Place coocurrence 
restrictions active in Arabic, i.e., OCP-labial, OCP-coronal/sonorant, OCP-
coronal/fricative, OCP-dorsal, and OCP-pharyngeal (the latter two overlap with 
uvulars, as expected). In other words, in virtually all cases, the hidden layer nodes 
compute symbolic-like OCP constraints. As an example, Fig. 2 shows the CART 
tree for the fifth hidden layer node of the 1st trial. This node approximates the 
OCP for [pharyngeal] specification. 

 
Figure 2: CART visualization of hidden layer node approximating OCP-pharyngeal. Circled 
nodes represent decisions about feature realization for a specified consonant, and boxed 
nodes represent predominant acceptable (checked) and marginal (starred) triliterals. 
 
Two observations can be made about the CART visualization above for the OCP-
pharyngeal node, and these observations are typical of the rest of the CARTs. 
First, this particular hidden layer node does a reasonably good job of predicting 
the nonoccurrence of triliterals that contain two pharyngeals. As we descend 
down the tree in Fig. 3, all triliterals (the boxed terminal nodes) that do not have 
two [phar] specifications (shown with at least two ∅) are allowed, and all but two 
of the schematic roots that have two [phar] are starred. These two cases involve 
the segment /q/ in either C1 or C3. Recall that, to be consistent with prior work, 
all uvulars, including /q/, have a [pharyngeal] specification. The apparent 
exceptions, however, reveal an important descriptive generalization in the dataset. 
While roots with two pharyngeals have low O/E values, most of the exceptions to 
OCP-pharyngeal, which again includes all uvulars, involve roots that contain /q/. 
There are 132 roots that contain /q/ and another pharyngeal consonant in the 



 

Buckwalter corpus, including 15 roots fitting the exempted pattern /q + 
Pharyngeal + C/ and 28 matching the pattern /Pharyngeal + C + q/. This fact is 
why /q/ is traditionally grouped with velars in descriptive statements of consonant 
cooccurrence (Greenberg 1950). A more systematic study of exceptions to OCP-
Place in Arabic is carried out in (Alderete et al. To Appear) and it is shown that 
while some exceptions evidenced by a large number of examples can be detected 
in a c-net, many more subtle patterns are not. To summarize the larger points, the 
hidden nodes are capable of approximating the functions of symbolic constraints, 
even when segment-level exceptions exist.  

5   A recurrent connectionist network for learning phonotactics 
A different approach to phonotactic learning is to encode phonotactic constraints 
in a model that attempts to faithfully reproduce the input. We use an architecture 
similar to that of (McClelland & Rumelhart 1985), namely a recurrent network, to 
illustrate how such a network can be used to generate acceptability values. We 
develop this alternative to demonstrate that success in learning phonotactics does 
not depend on the specific assumptions of the multi-layer network.  

In the Recurrent Network (RN), a triliteral root is again represented as a 
distributed representation of a sequence of three consonants, with one slight 
adjustment. For any phonological feature, a positive value is +1 in the activation 
vector, but both redundant and negative values are -1. The network consists of a 
single layer of 3x17=51 units. The network is fed by an external input, and the 
output of the network is the activation vector of the network at equilibrium. Each 
node in the network receives an external input via connections that are not 
adjusted, and each node of a segment X is connected to all other nodes that 
encode the two other segments besides segment X. For example, the node 
corresponding to [nasal] for the first consonant connects to all the other nodes that 
encode the second and third consonants, but not to any of the other nodes 
encoding the first consonant. Because the network is recurrent, we require an 
update rule, which is defined in the following way. Let the activation of the ith 
node be ai, the external output to the ith node be exti, the strength of the connection 
between node i and node j be Wij, and equilibrium activations be ai*. 
 

(2) Update rule for Recurrent Network 
 We have 
   dai / dt = σ (∑j Wij aj + exti) - ai 
 Equilibrium activations satisfy: 
   ai* = σ (∑j Wij aj* + exti) 

 
The goal in training the RN is to find Wij such that ∑j Wij aj* = exti, or, such that 
the internal input to each node matches the external input. The Delta rule, a 
standard learning rule in c-nets (McLeod et al., 1998), is used to do this. In each 
epoch, where the number of epoch in training = 105, a random attested word is 
selected and input to the system through exti. The system is then allowed to 



 

equilibriate using the current values of Wij. Then the weights Wij are adjusted so 
that ∑j Wij aj* more closely approximates exti. 

The mature network can then be used as an autoassociator, i.e., a system that 
attempts to faithfully map inputs onto identical outputs. While our RN is not a 
very effective autoassociator, it can be employed to measure acceptability in the 
following manner. The more the RN is able to reproduce an input as the external 
output, the more acceptable that input is. Thus, we define acceptability not in 
terms of an output score, as with the AN, but as a measure of the length of the 
distance between the external input and output vectors. 
 

(3) Acceptability (RN): acceptability = - || W a - ext || 
 

We applied this model and this definition of acceptability again to the Arabic 
data. The results of the multi-factor tests in experiments 1-3 are given in Table 3 
below, for three separate trials, again showing all effects that reach significance at 
level p<0.05. The RN gives a slightly poorer approximation of this pattern in that 
neighborhood density has a significant (though extremely small) effect, and the 
OCP accounts for a greater percentage of the variation. However, this 
characterization of the OCP is consistent with Frisch and Zawahdeh’s results in 
that the OCP is the most important effect on the acceptabilty. 
 
Table 3: Significant effects on acceptability in Recurrent Network from factors in Frisch & 
Zawaydeh 2001 experiments; cells show factor, percentage explained, and for experiment 1, 
correlation with the wordlikeness judgement data 

 Experiment 1 Experiment 2 Experiment 3 
Trial 1 OCP 58%, density 3%; r=0.49 OCP 49% similarity 14%  
Trial 2 OCP 58%, density 3%; r=0.48 OCP 51%  similarity 13%  
Trial 3 OCP 58%, density 3%; r=0.48 OCP 50% similarity 13% 

 
These learning results are consistent with the results of the feed-forward Assessor 
Network. Therefore, it cannot be the case that the connectionist approach 
employed here requires the assumptions specific to that model.  

5   Discussion 
The simulation results above demonstrate a new way of learning gradient 
phonotactic generalizations that does not require the prior existence of well-
formedness constraints. Our connectionist learners are able to learn complex 
distributional patterns in Arabic with rather simple network architectures and 
training regimes: a multi-layer network trained via backpropagation, and a basic 
recurrent network using gradient descent. 

This result sets our connectionist learning system apart from many 
contemporary approaches to learning phonotactics. As summarized above, most 
constraint-ranking algorithms can find the correct ranking of constraints, given 
the right data and a fixed set of constraints ((Tesar 2004), (Prince & Tesar 2004); 
(Boersma 1998), (Boersma & Hayes 2001); (Pater 2009)). But these 



 

investigations do not make learning the constraints themselves part of the learning 
problem. Furthermore, it has been conjectured that there is a close parallelism 
between the macro-structure of OT grammars and the micro-structure of 
connectionist networks (Smolensky & Legendre 2006b). However, as stated at the 
outset of this important work (chapter 1, section 2), the connectionist 
implementations of OT constraint systems have not yet shown how behavior 
resembling symbolic constraint interaction can be learned at this level of 
explanation. Our contribution to Smolensky and Legendre’s research paradigm is 
thus to show that at least one kind of phonological pattern, place-based 
cooccurrence restrictions, can be learned at the micro-structure level.  

The finding that constraints can be learned from data supports a comparison of 
our model to the MaxEnt phonotactic learning paradigm. Both approaches use 
principles of statistical learning to search a vast constraint space and provide the 
constraints that give a good approximation of the target grammar. As such, both 
rely heavily on a suitably large and representative data sample. Another similarity 
is that both approaches produce inductive baselines, or simple systems derived 
from data. These systems have limits, however, like the generalizations involving 
suprasegmentals that Hayes and Wilson document in their study. We have 
explored select problems in Arabic consonant phonology that extend this core 
phonotactic system and have likewise found certain facts that will require 
additional assumptions in our c-nets. For example, after extensive parameter 
switching, we have not found a means for our multi-layer network to learn the 
exceptions to the OCP in Arabic involving final geminates, i.e., roots in which the 
last two consonants are identical. Like Hayes and Wilson, we think that these 
facts demonstrate a role for constituent structure (syllables, doubly-linked 
segments, etc), which can be implemented in a c-net with tensor product 
representations (Smolensky & Legendre 2006a).  

How does our c-net model differ from the MaxEnt approach generally? One 
empirical point is that c-nets have greater descriptive capacity than MaxEnt 
grammars. The c-net constraint space is uncountably infinite and so it is richer, 
whereas Hayes and Wilson’s model makes certain modest, but restrictive, 
assumptions about the set of possible constraints. The math supplement to this 
article (available from the authors’ webpages) provides a proof that compares the 
underlining functions of MaxEnt and c-net grammars and shows that c-nets have 
greater descriptive capacity. It is a non-trivial empirical issue, however, if these 
differences matter for describing language. A typical constraint space in MaxEnt 
learning is still rather large, and c-net grammars are constrained significantly by 
training, which must be considered.  

We think that one key aspect of our approach that sets it apart from other 
paradigms, however, is the potential for integration with psycholinguistic models 
of production and perception. In the spreading interactive model of (Dell 1986), 
for example, selection of a word in the mental lexicon is simulated as the 
spreading of activation through a lexical network of many linguistic layers (i.e., 
morphological and phonological constituents). While there are important features 



 

of this model that differ from our c-net, e.g., bidirectional spreading and rich 
linguistic representations, an important point is that lexical selection is the result 
of activation spreading, an output pattern predicted by parallel processing of 
micro-elements. Another important model is the TRACE theory of word 
recognition (McClelland & Elman 1986), which uses spreading activation and 
parallel distributed processing to work in the other direction, predicting word 
forms from phonetic attributes. These models have been tremendously influential 
and provided a set of assumptions shared with many contemporary theories of 
speech production and perception. We believe that the parallel-distributed 
processing principles at the core of these two influential theories and our c-net 
may allow for a more natural integration of the functions of our c-net within these 
models. Furthermore, this integration is highly desirable in the case of 
dissimilatory phenomena, like Arabic OCP-Place constraints. As shown in detail 
in (Frisch 1996), (Frisch et al. 2004), (Frisch 2004), and (Martin 2007), many of 
the properties of dissimilatory patterns can be explained as the long term 
diachronic effects of constraints on speech production and perception.  
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