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Perfect matchings in bridgeless cubic graphs
A bridge : an edge whose deletion
disconnects the graph
Cubic graph: Every vertex is incident to / /

exactly 3 edges

Perfect matching: A set of edges that
covers all vertices exactly once.




Perfect matchings in bridgeless cubic graphs

Theorem(Petersen, 1891): Every bridgeless
cubic graph has a perfect matching.

Observation(Tait, 1880): The Four Color

Theorem is equivalent to the following: /
The edge set of every planar cubic

bridgeless graph is the union of three

perfect matchings.

Conjecture(Berge, Fulkerson, 1971):

In every bridgeless cubic graph there exists
a collection of perfect matchings covering
every edge exactly twice.




The number of perfect matchings

m(G): The number of perfect matchings in a graph G

* m(G) is hard to compute (Valiant, 1979)

* m(G) is equal to the permanent of the graph
biadjacency matrix when G is bipartite

« m(G) is related to meaningful chemical and
physical properties of molecules
represented by G




Perfect matchings in bridgeless cubic graphs

m(G): The number of perfect matchings in a graph G

Theorem: There exists a constant ¢ >0 such that m(G) > 2°V(G) in every cubic

bridgeless graph G. (¢ = 1/3656.)

Conjectured by Lovasz and Plummer (1970’s).




Perfect matchings in bridgeless cubic graphs

m(G): The number of perfect matchings in a graph G

Theorem: There exists a constant & >0 such that m(G)= 241719

bridgeless graph G. (¢ = 1/3656.)

in every cubic

Conjectured by Lovasz and Plummer (1970’s).

Previous results:

V(G)/2

Voorhoeve (1979) : m(G) for bipartite G

v

4
3
Chudnovsky, Seymour (2008): m(G)z @) for planar G. (¢ = 1/655978752.)

Edmonds, Lovasz, Pulleyblank(1982):  m(G)=n/4+2 (V(G)|=n)

Kral’, Sereni, Stiebitz (2008): m(G)=n

IV

Esperet, Kral', Skoda, Skrekovski (2009): m(G)=3n/4-10

Esperet, Kardos, Kral’ (2010): m(G) is superlinear.



m*(G)

m*(G): the maximum number & such that every edge of G belongs to at least & perfect
matchings.



m*(G)

m*(G): the maximum number & such that every edge of G belongs to at least & perfect
matchings.

¢0-0

m*(G)Zm*(Gl)m*(Gz)a

We can not say the same for m(G).



Voorhoeve's splitting trick

m*(G): the maximum number & such that every edge of G belongs to at least k& perfect
matchings.
4 V(G)/2-3

Theorem(Voorhoeve): m * (G) = (5) for every bipartite cubic graph G.

Proof:
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Voorhoeve's splitting trick

m*(G): the maximum number & such that every edge of G belongs to at least k& perfect
matchings.
V(G)/2-3

Theorem(Voorhoeve): m * (G) = (%) for every bipartite cubic graph G.

Proof:

3m*(G)2m*(G1)+m*(G2)+m*(G3)+m*(G4)
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Cubic bridgeless graph with m*(G)=1
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Cubic bridgeless graph with m*(G)=1

f

Two perfect matchings M, and M, such that M, [ M,
contains at least ¢|V(G)| disjoint cycles.



Cubic bridgeless graph with m*(G)=1

f

Two perfect matchings M, and M, such that M, [ M,
contains at least ¢|V(G)| disjoint cycles.



A strengthening

Theorem: There exists a constant ¢ >0 such that for every cubic
bridgeless graph G either

o m*(G)= 247 (G) oy

o for some two perfect matchings M, and M, in G the edge set M, [ M,
contains at least ¢|V(G)| disjoint cycles.



The perfect matching polytope

1, eEM

With a perfect matching M we associate a vector X, ERMV: x,,(e) = {0 e M

The perfect matching polytope PMP(G) is the convex hull of characteristic
vectors of perfect matchings of G.

Let 0(X)denote the set of edges in the cut separating X from 7(G)-X.

Theorem(Edmonds): We have w& PMP(G) if and only if

O 0=w(e)=<1forevery e E(G),
o w(d(v)) =1forevery velV(G),
O w(d(X))=1forevery odd X CV(G).

A vector wE PMP(G) corresponds to a probabilistic distribution on the set of
perfect matchings of G such that

PrleeEM |=w(e).

If G is cubic and bridgeless then w=1/3€ PMP(G).



Burls

Aset X CV(G) is M-alternating for a perfect matching M of G if there exists

another perfect matching M’ such that M only differs from A’ on X.

Aset X CV(G) is a burl if for every probabilistic distribution M, such that
PrleeM 1=1/3,

we have

Pr[ X is M -alternating] =1/3.

A foliage in G is a collection of
pairwise disjoint burls.
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Using a foliage

A foliage in G is a collection of pairwise disjoint burls.
Let 7 (G) denote the maximum size of a foliage in G.

Lemma: m(G) , 21973

Proof: Given a foliage { X}, X,, ..., X, } there exists w& PMP(G) such that each X; is
w-alternating. Then

Pr[ X, is M -alternating] = 1/3.
E[|{i: X,is M -alternating}|] = k/3.

A perfect matching achieving the expected value can be independently changed to
another perfect matching on each of the £/3 disjoint burls.



Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G,
o m* (G) =1,
o m*(G)=2,if|V(G) |z 6and G hasno non- trivial cuts of size < 3,
o m(G)=4,if |V(G)|z6.
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Lemma: For a cubic bridgeless graph G,
o m* (G) =1,
o m*(G)=2,if|V(G) |z 6and G hasno non- trivial cuts of size < 3,
o m(G)=4,if |V(G)|z6.

A set X CV(G) is a twig if either |6(X)|=2, or |d(X)|=3 and |X], 5.
Lemma: Every twig is a burl.

Proof: Pr[|M No(X)|=1]=1.




Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G,
o m* (G) =1,
o m*(G)=2,if|V(G) |z 6and G hasno non- trivial cuts of size < 3,
° m(G)=4,if|V(G) |z 6.

A set X CV(G) is a twig if either |6(X)|=2 or |6(X)|=3 and |X], 5.

Lemma: Every twig is a burl.

Proof: Pr[|M No(X)|=1]=1.

One of the edges of §(X) is in at
least 2 perfect matchings of the
new graph.




Examples of burls: 4-cycles

1/3 1/3

Lemma: Vertex set of any cycle of length 4 is a burl.
Proof: E[|M No(X)|[]=4/3,
M, Né(X)|E{0,2,4 }
Pr[| M, ,No(X)|=0]=1/3.



Decomposing along small cuts

00-06

We say that G, and G, are obtained from G by a cut contraction.
(We can apply a similar procedure to cuts of size 2.)

Lemma: m*(G)=m*(G,)m*(G,), 7G)= 1(G)+ f(G,)-2.

We say that G has a core if a graph G ’with |I{(G")| , 6 and no non-trivial cuts of size at
most 3 can be obtained from G by a (possibly empty) sequence of cut contractions.



Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core

m*(G)= 247 (G- 81 (@

where a << ff <<y <<1.



Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core
m (G) = 2AV(G)-B S (D+r

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve’s splitting trick.
3m*(G)2 m*(G1)+m*(G2)+m*(G3)+m*(G4)
V(G =V(G)[-2
1(G)=f(G)+2



Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core
m (G) = 2AV(G)-B S (D+r

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve’s splitting trick.

2. Easy if for some small cut both contractions G,and G, have a core

(G) =m* (G1 ) m* (G2 ) > 2V (G- f(G)-2p+2y

1G)= £(G)+ £(G,)-2.

\%



Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core
m (G) = 2AV(G)-B S (D+r

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve’s splitting trick.
2. Easy if for some small cut both contractions G,and G, have a core.

3. Otherwise, G has a tree structure with respect to small cuts with exactly one “large”
piece.



Cut decomposition

G has a tree structure with respect to small cuts with exactly one “large” piece.

m m * (G) =m*(G') = ~al V(G )-8 f(G)+y
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Cut decomposition

G has a tree structure with respect to small cuts with exactly one “large” piece.
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Cut decomposition

G has a tree structure with respect to small cuts with exactly one “large” piece.
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Cut decomposition

G has a tree structure with respect to small cuts with exactly one “large” piece.

If this part contained no long paths then we lost & twigs
by deleting it a multiple of k vertices and gained at most
one twig.

________________________________________________________________________________




Burls in long paths of 3-cuts

A burl



Burls in long paths of 3-cuts
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Burls in long paths of 3-cuts

Behaves like a 4-cycle
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k-regular graphs

Conjecture(Lovasz,Plummer,1986): There exist constants c,(k), ¢,(k)>0 such that for
every k-regular graph G with 7 *(G) = 1, we have

[V (G)|

m(G) = c,(k) (c,(k))

Moreover, c,(k) = 1as k— 1.

Counterexample (Geelen, N.): For k , 4 there exist k-regular graphs G with m* (G) =1,
and

m(G) < 20(\/ V(GHD

(Examples are not (k-1)-edge-connected.)



k-regular graphs

Conjecture(Lovasz,Plummer,1986): There exist constants c,(k), ¢,(k)>0 such that for
every k-regular (k-7)-edge-connected graph G we have

[V (G)|

m(G) = c,(k) (c,(k))

Moreover, c,(k) = 1as k— 1.

Theorem(Seymour): There exist a constant & >0 such that m(G) = 2271

regular (k-1)-edge-connected graph G.

in every k-




k-regular graphs

Conjecture(Lovasz,Plummer,1986): There exist constants c,(k), ¢,(k)>0 such that for
every k-regular (k-7)-edge-connected graph G we have

[V (G)|

m(G) =z c,(k) (c,(k))
Moreover, c,(k) = 1as k— 1.

Theorem(Seymour): There exist a constant ¢ >0 such that m(G) = 2°"6) every k-
regular (k-1)-edge-connected graph G.

Proof: Consider w=1/k&€ PMP(G).
Choose 3-perfect matchings independently
from the corresponding distribution.




Thank you!




