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Perfect matchings in bridgeless cubic graphs  

 
 
 
 
 
 
 

  
 

 
 
 

A bridge : an edge whose deletion 
disconnects the graph 
 
 
 
 
Cubic graph: Every vertex is incident to 
exactly 3 edges 
 
Perfect matching: A set of edges that  
covers all vertices exactly once. 
 
 
 
 
 
 



Perfect matchings in bridgeless cubic graphs  

 
 
 
 
 
 
 

  
 

 
 
 

Theorem(Petersen, 1891): Every bridgeless 
cubic graph has a perfect matching. 
 
 
 
Observation(Tait, 1880): The Four Color 
Theorem is equivalent to the following: 
 
The edge set of every planar cubic 
bridgeless graph is the union of three 
perfect matchings. 
 
 
Conjecture(Berge, Fulkerson, 1971):  
In every bridgeless cubic graph there exists 
a collection of perfect matchings covering 
every edge exactly twice. 
 
 
 
 
 
 
 
 



The number of perfect matchings 

 
 
 
 
 
 
 

  
 

 
 
 

m(G): The number of perfect matchings in a graph G 
 
 
 
•  m(G) is hard to compute (Valiant, 1979) 

•  m(G) is equal to the permanent of the graph  
  biadjacency matrix when G is bipartite 

•  m(G) is related to meaningful chemical and  
  physical properties of molecules  
  represented by G  
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m(G): The number of perfect matchings in a graph G 
 
Theorem: There exists a constant ε >0 such that                         in every cubic  
                 bridgeless graph G. ( ε = 1/3656.) 
 
Conjectured by Lovász and Plummer (1970’s). 
 
 
 

( ) ( )|Gε|VGm 2≥



Perfect matchings in bridgeless cubic graphs  

 
 
 
 
 
 
 

  
 

 
 
 

m(G): The number of perfect matchings in a graph G 
 
Theorem: There exists a constant ε >0 such that                         in every cubic  
                 bridgeless graph G. ( ε = 1/3656.) 
 
Conjectured by Lovász and Plummer (1970’s). 
 
Previous results: 
 
Voorhoeve (1979) :                                        for bipartite G. 
 
Chudnovsky, Seymour (2008):                                       for planar G. (ε = 1/655978752.) 
 
Edmonds, Lovász, Pulleyblank(1982): 
 
Král’, Sereni, Stiebitz (2008):  
 
Esperet, Král’, Škoda, Škrekovski (2009): 
 
Esperet, Kardoš, Král’ (2010):            m(G)  is superlinear.  
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m*(G): the maximum number k such that every edge of G belongs to at least k perfect 
matchings. 
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We can not say the same for m(G). 



Voorhoeve’s splitting trick 

 
 
 
 
 
 
 

  
 

 
 
 

m*(G): the maximum number k such that every edge of G belongs to at least k perfect 
matchings. 
 
Theorem(Voorhoeve):                                   for every bipartite cubic graph G.   
 
Proof: 
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Voorhoeve’s splitting trick 

 
 
 
 
 
 
 

  
 

 
 
 

m*(G): the maximum number k such that every edge of G belongs to at least k perfect 
matchings. 
 
Theorem(Voorhoeve):                                   for every bipartite cubic graph G.   
 
Proof: 
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Cubic bridgeless graph with  m*(G)=1  
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Cubic bridgeless graph with  m*(G)=1  
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Cubic bridgeless graph with  m*(G)=1  



Cubic bridgeless graph with  m*(G)=1  

 
 
 
 
 
 
 

  
 

 
 
 

 
 
 
 

f 

Two perfect matchings M1 and M2 such that M1 [ M2 
contains at least ε|V(G)| disjoint cycles. 
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Two perfect matchings M1 and M2 such that M1 [ M2 
contains at least ε|V(G)| disjoint cycles. 

Cubic bridgeless graph with  m*(G)=1  



Theorem: There exists a constant ε >0 such that  for every cubic  
                 bridgeless graph G either 
 

o                             or 

o   for some two perfect matchings M1 and M2  in G the edge set M1 [ M2 
contains at least ε|V(G)| disjoint cycles. 
 

A strengthening 
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The perfect matching polytope 

 
 
 
 
 
 
 

  
 

 
 
 

 
 
 
 

 With a perfect matching M we associate a vector  
 
 
The perfect matching polytope PMP(G) is the convex hull of characteristic 
vectors of perfect matchings of G.  
 
Let           denote the set of edges in the cut separating X from V(G)-X. 
 
Theorem(Edmonds): We have                        if and only if 

o   
o    
o       

A vector                        corresponds to a probabilistic distribution on the set of 
perfect matchings of G such that  

 
 
 

If G is cubic and bridgeless then                                 .                                  
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Burls 

 
 
 
 
 
 
 

  
 

 
 
 

 
 
 
 

 A set                 is M-alternating for a perfect matching M of G if there exists 
another  perfect matching M’ such that M only differs from M’ on X. 
 
A set                is a burl if  for every probabilistic distribution Mw such that 
 
 
we have 
 
 
 
A foliage in G is a collection of  
pairwise disjoint burls.  
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A foliage 

 
 
 
 



A foliage 

 
 
 
 



A foliage 

 
 
 
 



Using a foliage 

 
 
 
 
 
 
 

  
 

 
 
 

 
 
 
 

 A foliage in G is a collection of pairwise disjoint burls.  
Let  f (G) denote the maximum size of a foliage in G. 
 
Lemma: m(G) ¸ 2 f(G)/3 
 

Proof: Given a foliage { X1, X2, …, Xk } there exists                        such that each Xi  is  
w-alternating. Then 
 
 
 
 
A perfect matching achieving the expected value can be independently changed to 
another perfect matching on each of the k/3 disjoint burls.    
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Examples of burls: Twigs 

 
 
 
 
 
 
 

  
 

 
 
 

 
 
 
 

 

Lemma: For a cubic bridgeless graph G, 
o     
o    
o      
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Examples of burls: Twigs 

 
 
 
 
 
 
 

  
 

 
 
 

 
 
 
 

 

Lemma: For a cubic bridgeless graph G, 
o     
o    
o      

 
A set               is a twig if either |δ(X)|=2,  or |δ(X)|=3 and |X|¸ 5. 
 
Lemma: Every twig is a burl. 
 
Proof: 
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Lemma: For a cubic bridgeless graph G, 
o     
o    
o      

 
A set               is a twig if either |δ(X)|=2  or |δ(X)|=3 and |X|¸ 5. 
 
Lemma: Every twig is a burl. 
 
Proof: 
 
 

      One of the edges of δ(X) is in at 
      least 2 perfect matchings of the 
      new graph.  

 

Examples of burls: Twigs 
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Examples of burls: 4-cycles 
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Lemma: Vertex set of any cycle of length 4 is a burl. 
 
Proof: 
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Decomposing along small cuts 

We say that G1 and G2 are obtained from G by a cut contraction. 
(We can apply a similar procedure to cuts of size 2.)  
 
 
Lemma:  
 
 
We say that G has a core if a graph G’ with |V(G’)| ¸ 6 and no non-trivial cuts of size at 
most 3 can be obtained from G by a (possibly empty) sequence of cut contractions. 
 
  
  
  

G1 G2 

G 
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Main technical statement 

Theorem: Let G be a cubic bridgeless graph then, if G has a core 
 
 
 
where 
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Main technical statement 

Theorem: Let G be a cubic bridgeless graph then, if G has a core 
 
 
 
 
Sketch of a proof: By induction. 
 
1.  If G has no non-trivial cuts of size at most 3 apply Voorhoeve’s splitting trick. 
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Main technical statement 

Theorem: Let G be a cubic bridgeless graph then, if G has a core 
 
 
 
 
Sketch of a proof: By induction. 
 
1.  If G has no non-trivial cuts of size at most 3 apply Voorhoeve’s splitting trick. 

2.  Easy if for some small cut both contractions G1 and G2  have a core 
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Main technical statement 

Theorem: Let G be a cubic bridgeless graph then, if G has a core 
 
 
 
 
Sketch of a proof: By induction. 
 
1.  If G has no non-trivial cuts of size at most 3 apply Voorhoeve’s splitting trick. 

2.  Easy if for some small cut both contractions G1 and G2  have a core. 

3.  Otherwise, G has a tree structure with respect to small cuts with exactly one “large” 
piece. 
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Cut decomposition 

G has a tree structure with respect to small cuts with exactly one “large” piece. 
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Cut decomposition 

G has a tree structure with respect to small cuts with exactly one “large” piece. 
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Cut decomposition 

G has a tree structure with respect to small cuts with exactly one “large” piece. 
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Cut decomposition 

G has a tree structure with respect to small cuts with exactly one “large” piece. 
 
 
 
 
 
 
 

If this part contained no long paths then we lost k twigs 
by deleting it a multiple of k vertices and gained at most 
one twig. 

G’ 



Burls in long paths of 3-cuts 

A burl 



Burls in long paths of 3-cuts 



Burls in long paths of 3-cuts 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 2/3 

2/3 

2/3 

0 

0 

0 

Behaves like a 4-cycle 



k-regular graphs 

 
 
 
 
 

Conjecture(Lovász,Plummer,1986): There exist constants c1(k), c2(k)>0 such that for 
every  k-regular graph G with                  we have 
 
 
 
Moreover, c2(k) → 1 as k → 1.  
 
Counterexample (Geelen, N.): For k ¸ 4 there exist k-regular graphs G with 
and  
 
 
 
(Examples are not (k-1)-edge-connected.) 
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Conjecture(Lovász,Plummer,1986): There exist constants c1(k), c2(k)>0 such that for 
every  k-regular (k-1)-edge-connected graph G we have 
 
 
 
Moreover, c2(k) → 1 as k → 1.  
 
Theorem(Seymour): There exist a constant ε >0 such that                        in every k-
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k-regular graphs 

 
 
 
 
 

Conjecture(Lovász,Plummer,1986): There exist constants c1(k), c2(k)>0 such that for 
every  k-regular (k-1)-edge-connected graph G we have 
 
 
 
Moreover, c2(k) → 1 as k → 1.  
 
Theorem(Seymour): There exist a constant ε >0 such that                        in every k-
regular (k-1)-edge-connected graph G. 
 
Proof: Consider      
Choose 3-perfect matchings independently  
from the corresponding distribution. 
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Thank you! 

 
 
 

 
 
 


