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Abstract

A class of simple undirected graphs is small if it contains at most n!αn la-

belled graphs with n vertices, for some constant α. We prove that for any

constants c, ε > 0, the class of graphs with expansion bounded by the func-

tion f(r) = cr1/3−ε
is small. Also, we show that the class of graphs with

expansion bounded by 6 · 3
√

r log(r+e) is not small.

We work with simple undirected graphs, without loops or parallel edges.

A class of graphs is small if it contains at most n!αn different (but not

necessarily non-isomorphic) labelled graphs on n vertices, for some constant

α. For example, the class of all trees is small, as there are exactly nn−2 < n!en

trees on n vertices.

Norine, Seymour, Thomas and Wollan [8] showed that all proper minor-
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snorin@math.princeton.edu (Serguei Norine)

1Supported by the project 1M0021620808 of the Ministry of Education of the Czech
Republic.

2Partially supported by the NSF under Grant DMS-0701033.

Preprint submitted to Elsevier June 16, 2009



closed classes of graphs are small, answering the question of Welsh [9]. This

question was motivated by the results of McDiarmid, Steger and Welsh [2]

regarding random planar graphs. These results in fact hold for any class of

graphs that is small and addable. A class G is addable if

• G ∈ G if and only if every component of G belongs to G, and

• if G1, G2 ∈ G, v1 ∈ V (G1) and v2 ∈ V (G2), then the graph obtained

from the disjoint union of G1 and G2 by adding the edge {v1, v2} belongs

to G.

Many naturally defined graph classes are addable (for example, minor-closed

classes defined by excluding a set of 2-connected minors), and this condition

is usually easy to verify. The more substantial assumption thus is that the

class is small.

Let G be a class that is small and addable, and let N(n) be the number

of labelled graphs in G with n vertices. In [2] the following results (among

others) were shown:

• The limit c = limn→∞(N(n)/n!)1/n exists and is finite.

• If K1,k+1 ∈ G, then there exist constants d and n0 such that letting

ak = d/(ck(k + 2)!), the probability that a random graph in G on

n ≥ n0 vertices has fewer than akn vertices of degree k is at most

e−akn. Also, a similar result is shown for the number of appearances of

arbitrary connected subgraphs.

• The probability that a random graph in G on n vertices has an isolated

vertex is at least a1/e + o(1) (on the other hand, the probability that
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such a graph is connected is greater than zero as well).

Let us now recall the notion of classes of graphs with bounded expansion,

as defined by Nešetřil and Ossona de Mendez [6, 3, 4, 5]. The grad (Greatest

Reduced Average Density) with rank r of a graph G is equal to the largest

average density of a graph G′ that can be obtained from G by removing

some of the vertices (and possibly edges) and then contracting vertex-disjoint

subgraphs of radius at most r to single vertices (arising parallel edges are

suppressed). The grad with rank r of G is denoted by ∇r(G). In particular,

2∇0(G) is the maximum average degree of a subgraph of G. Given a function

f : Z+ → R+, a graph has expansion bounded by f if ∇r(G) ≤ f(r) for every

integer r. A class G of graphs has expansion bounded by f if the expansion

of every G ∈ G is bounded by f . Finally, we say that a class of graphs G has

bounded expansion if there exists a function f such that the expansion of G
is bounded by f .

The concept of classes of graphs with bounded expansion proves sur-

prisingly powerful. Many classes of graphs have bounded expansion (proper

minor-closed classes, classes of graphs with bounded maximum degree, classes

of graphs excluding subdivision of a fixed graph, . . . ), and many results for

proper minor-closed classes (existence of colorings, small separators, light

subgraphs, . . . ) generalize to classes of graphs with bounded expansion (pos-

sibly with further natural assumptions). The classes of graphs with bounded

expansion are also interesting from the algorithmic point of view, as the

proofs of the mentioned results usually give simple and efficient algorithms.

Furthermore, fast algorithms and data structures for problems like deciding

whether a graph contains a fixed subgraph, or for determining the distance
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between a pair vertices (assuming that the distance is bounded by a fixed

constant), have been derived. The reader is referred to [7] for a survey of the

results regarding the bounded expansion.

The aim of this paper is to prove that classes of graphs with expan-

sion bounded by a slightly subexponential function (f(r) = cr1/3−ε
for any

c, ε > 0) are small. This generalizes the result of [8], as proper minor-closed

classes have expansion bounded by a constant. Also, we believe that our

proof technique is simpler and more natural, although the calculations are

somewhat involved. Furthermore, we show that the class of graphs with

expansion bounded by 6 · 3
√

r log(e+r) is not small.

Let us now describe the basic idea of the proof: As Nešetřil and Os-

sona de Mendez [4] showed, graphs in a class with expansion bounded by a

subexponential function have separators of sublinear size (for more precise

statement, see the following section). Therefore, each graph on n vertices in

the class is a union of two smaller graphs (of order between n/3 and 2n/3)

from the same class, with a few vertices (forming the separator of o(n) size)

identified. This gives a recurrence for the number of graphs with n vertices,

which we use to show that the class is small; see Section 2 for further details.

1. Separators

For a graph G, a set S ⊆ V (G) is a separator if there exist sets A, B ⊆
V (G) such that A ∪ B = V (G), A ∩ B = S, G contains no edges between

A−S and B−S, and max(|A\S|, |B \S|) ≤ 2
3
|V (G)|. We need the following

result of Nešetřil and Ossona de Mendez [4].
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Theorem 1. There exists a constant C such that for every integer z, if a

graph G on n vertices satisfies 2z(∇z(G) + 2) ≤
√

n log n, then G has a

separator of size at most C n log n
z

.

We use the following corollary:

Corollary 2. Let k ≥ 1
2

be a constant and let G be the class of graphs with

expansion bounded by a function f such that f(r) ≤ k
r
e

1
2

3
√

9 r
log2 r −2 for r ≥ 2.

There exists a constant c such that every graph G ∈ G with n ≥ 3 vertices

has a separator of size cn
(log n log log n)2

.

Proof. We apply Theorem 1 with z = 1
2k

log3 n log2 log n. The assumptions

are satisfied, as 2z(∇z(G)+2) ≤ 2z(f(z)+2) ≤ 2z(f(log3 n log2 log n)+2) ≤
e

1
2

log n ≤
√

n log n.

2. Lower bound

Let us start with a technical lemma:

Lemma 3. For every n ≥ 3,

1
log log(2n/3)

− 1
log log n

≥ 1
3 log n log2 log n

.

Proof. Let x = log n and c = log 3
2
, and note that x ≥ 1. Then 1

log log(2n/3)
−

1
log log n

= 1
log(x−c)

− 1
log x

≥ log x−log(x−c)

log2 x
≥ log(1+ c

x
)

log2 x
. The claim follows, as

log(1 + c
x
) ≥ 1

3x
for x ≥ 1.

We can now proceed with the main result of this section:

Theorem 4. Let c > 0 be a constant and let G be a class of graphs closed

under taking induced subgraphs, such that every graph G ∈ G with n ≥ 3
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vertices has a separator of size at most s(n) = cn
(log n log log n)2

. Then G is

small.

Proof. We consider G as a class of unlabelled graphs; let N(n) be the number

of graphs in G with n vertices. Let h(n) = 12cn
log log n

for n ≥ 3, and let n0 ≥ 3

be an integer such that

• h(n) < n and s(n) ≥ 1 for all n ≥ n0,

• h(n) is non-decreasing and concave on the interval (n0, +∞), and

• 2n/3 + s(n) ≤ n − 1 for n ≥ n0.

Let C ≥ e be a constant such that N(n) ≤ Cn−h(n) for n0 ≤ n ≤ 3n0. We

show by induction that N(n) ≤ Cn−h(n) for every n ≥ n0. This implies that

G, considered as a class of labelled graphs, is small.

For n ≤ 3n0 the claim holds by the choice of C. Assume now that n > 3n0,

and that N(k) ≤ Ck−h(k) for n0 ≤ k < n. Let s = ⌊s(n)⌋. A graph G ∈ G on

n vertices has a separator S of size at most s (with the corresponding vertex

sets A and B such that A ∩ B = S), and since we can add vertices to the

separator, we may assume that |S| = s. Note that the graphs G[A] and G[B]

belong to G. We conclude that

N(n) ≤
⌊2n/3⌋+s

∑

a=⌈n/3⌉

(

a

s

)(

n − a + s

s

)

s!N(a)N(n − a + s),

since every graph in G on n vertices can be constructed in the following way:

Choose an integer a such that ⌈n/3⌉ ≤ a ≤ ⌊2n/3⌋+s and graphs G1, G2 ∈ G
such that |V (G1)| = a and |V (G2)| = n−a+s (for a fixed a, this can be done

in N(a)N(n − a + s) ways). Choose subsets S1 ⊆ V (G1) and S2 ⊆ V (G2) so
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that |S1| = |S2| = s (this can be done in
(

a
s

)(

n−a+s
s

)

ways). Choose a perfect

matching between the vertices of S1 and S2 (in s! ways), and identify the

matched vertices in S1 and S2.

Note that
(

a
s

)

s! ≤ ns and
(

n−a+s
s

)

≤ ns. Also, n0 ≤ n/3 ≤ a < n and

n0 ≤ n − a + s < n, thus by the induction hypothesis

N(n) ≤
⌊2n/3⌋+s

∑

a=⌈n/3⌉
n2sCn+s−h(a)−h(n−a+s).

As h is concave, we get

h(a) + h(n − a + s) ≥ h(n/3) + h(2n/3 + s) ≥ h(n/3) + h(2n/3).

It follows that

N(n) ≤ n2s+1Cn+s−h(n/3)−h(2n/3)

= Cn+(2s+1) logC n+s−h(n/3)−h(2n/3)

≤ Cn+(2s(n)+2) log n−h(n/3)−h(2n/3).

Moreover,

h(n/3) + h(2n/3) − h(n) = 12cn

(

1/3

log log(n/3)
+

2/3

log log(2n/3)
− 1

log log n

)

≥ 12cn

(

1

log log(2n/3)
− 1

log log n

)

,

and by Lemma 3,

h(n/3) + h(2n/3) − h(n) ≥ 12cn

3 log n log2 log n
≥ (2s(n) + 2) log n.

It follows that N(n) ≤ Cn−h(n), as required.

Together with Corollary 2, this implies the following.
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Corollary 5. For any k > 0, the class of graphs with expansion bounded by

a function f(r) = k
r
e

1
2

3
q

9 r
log2(r+e) − 2 is small.

Note that for any c, ε > 0, there exists k such that the function h(r) =

cr1/3−ε
satisfies h(r) ≤ f(r), thus the class of graphs with expansion bounded

by h is small.

3. Upper bound

For any fixed d > 2, the results of Bender and Canfield [1] imply that the

number of simple d-regular graphs on n vertices (with dn even) is Ω
(

(nd/2)!
(d!)n

)

.

It follows that the class of 3-regular graphs (whose expansion is bounded by

f(r) = 3 · 2r−1) is not small. We can improve this observation slightly in the

following way: for a non-decreasing positive function g : Z+ → Z+, let Gg be

the class of graphs such that G ∈ Gg if and only if there exists a 4-regular

graph H such that G is obtained from H by subdividing each edge of H by

g(|V (H)|) vertices (we could use 3-regular graphs in the same construction,

but the obtained bound would be similar and by using 4-regular graphs, we

avoid the need to require that the number of vertices is even). Let N(g, n) be

the number of graphs in Gg with n vertices, and N4(n) the number of 4-regular

graphs with n vertices, N4(n) = Ω
(

(2n)!
24n

)

= Ω
(

(n!)2

7n

)

. If n = k(1 + 2g(k)),

then N(g, n) ≥
(

n
k

)

N4(k)(n−k)!—we choose the vertices of a 4-regular graph

H , order the remaining n− k vertices arbitrarily, and distribute them to the

edges of H according to some canonical ordering of E(H). It follows that

N(g, n) ≥ n!N4(k)/k! = Ω
(

n!k!
7k

)

. If k log k = ω(n), this implies that Gg is

not small. We can achieve this by choosing a function g(x) = o(log x).
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Theorem 6. The class of graphs with expansion bounded by the function

f(r) = 6 · 3
√

r log(r+e) is not small.

Proof. Let g be the function defined in the following way: g(k) = t, where

t is the smallest integer such that log k ≤ t log t. Note that g(k) = o(log k),

thus the class Gg is not small. We show that the expansion of Gg is bounded

by f . Consider a graph G ∈ Gg, and let k be the number of vertices of G

of degree 4; i.e., n = |V (G)| = k(1 + 2g(k)). Let H be the 4-regular graph

obtained from G by suppressing the vertices of degree two, |V (H)| = k.

Let r ≥ 0 be an integer and let us show that ∇r(G) ≤ f(r). Note that

∇0(G) ≤ 2 < f(0) and ∇1(G) ≤ 6 < f(1), thus assume that r > 1. If

g(k) ≤
√

r
log r

, then k ≤ eg(k) log g(k) ≤ e
1
2

√
r log r ≤ f(r). Furthermore, note

that suppressing the vertices of degree at most two does not decrease the

maximum average density, thus ∇r(G) ≤ |V (H)|−1
2

≤ k ≤ f(r). Therefore,

assume that g(k) ≥
√

r
log r

. However, subgraph of G of radius r corresponds

to a subgraph of H of radius at most
⌈

r
g(k)+1

⌉

, thus ∇r(G) ≤ ∇⌈ r
g(k)+1⌉(H) ≤

2 · 3
r

g(k)
+1 ≤ 6 · 3

√
r log r ≤ f(r).

4. Concluding remarks

For a function f , let l(f) = lim supr→∞
log log f(r)

log r
. By Corollary 5, if

l(f) < 1/3, then the class of graphs with expansion bounded by f is small.

On the other hand, in Theorem 6 we proved that there exists a function f

with l(f) = 1/2 such that the class of graphs with expansion bounded by f

is not small.

Question 1. What is the infimum of values of l(f) taken over all functions
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f : Z+ → R+, such that the class of graphs with expansion bounded by f is

not small?

Instead of considering the expansion, we can formulate a similar question

in the terms of the size of the separators. For a hereditary class of graphs G,

let s(G) = lim infG∈G
log |V (G)|−log s(G)

log log |V (G)| , where s(G) is the size of the smallest

separator in G. Theorem 4 shows that if s(G) > 2, then G is small, and

Theorem 6 shows an example of a class with s(G) = 1 that is not small.

Question 2. What is the supremum of values of s(G) taken over hereditary

classes of graphs G which are not small?

We suspect that the answer to Question 2 is 1. This would imply that

the answer to Question 1 is 1/2.
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