CONNECTIVITY OF ADDABLE CLASSES OF FORESTS (DRAFT)

SERGEY NORIN

ABSTRACT. We improve the bound from [1] on connectivity of addable graph classes.

Let \mathcal{A} be a class of graphs and let \mathcal{A}_n be the set of graphs in \mathcal{A} on the vertex set $\{1, \ldots, n\}$. Let $p(\mathcal{A}_n)$ denote the probability that an element of \mathcal{A}_n chosen uniformly at random is connected. We say that \mathcal{A} is *addable* if the graph G + e belongs to \mathcal{A} for every graph $G \in \mathcal{A}$ and every edge e joining to vertices in different components of G.

Theorem 1. If \mathcal{A} is an addable class of graphs then

$$\lim_{n \to \infty} \inf p(\mathcal{A}_n) \ge e^{-2/3}.$$

As described in [2], the results of [1] can be deduced from the following rather technical theorem concerning the relationship between the classes of all trees and all two component forests on n vertices. We use the notation from [2]. Let \mathcal{F}_1 be the set of all trees on the vertex set $\{1, \ldots, n\}$, and let \mathcal{F}_2 be the set of all two component forests on this vertex set. Let B_n be a bipartite graph with the bipartition $(\mathcal{F}_1, \mathcal{F}_2)$ and $T \in \mathcal{F}_1$ joined by an edge to $F \in \mathcal{F}_2$ if and only if $T \supset F$. For a vertex $G \in V(B_n)$ we denote by $\delta(G)$ the set of all edges of B_n incident to G.

Theorem 2. There exists a weight function $w : E(B_n) \to \mathbb{R}_+$ such that

(a) $w(\delta(T)) = 1$ for every $T \in \mathcal{F}_1$, and (b) $w(\delta(T)) \geq \frac{3}{2}$ (c) for every $F \in \mathcal{T}_2$

(b) $w(\delta(F)) \ge \frac{3}{2} - o_n(1)$ for every $F \in \mathcal{F}_2$.

Proof. We define w in several steps. We start by fixing $T \in \mathcal{F}_1$ and defining a discharging function $d_T : E(T) \times E(T) \to \mathbb{R}_+$. For $e \in E(T)$, let T_1 and T_2 be the two components of $T \setminus e$. If $|V(T_1)| = |V(T_2)|$, let $d_T(e, e) = 1$ and $d_T(e, f) = 0$ for every $f \in E(T) - \{e\}$. Otherwise, we assume without loss of generality that $|V(T_1)| < |V(T_2)|$ and set $d_T(e, f) = 1/|V(T_1)|$ for every $f \in E(T_1) \cup \{e\}$, and $d_T(e, f) = 0$ for every $f \in E(T_2)$. We have

$$\sum_{f \in E(T)} d_T(e, f) = 1 \tag{1}$$

for every $e \in E(T)$.

We are now ready to define a weight function $w' : E(B_n) \to \mathbb{R}_+$, which will be close to satisfying the theorem. We will later obtain w by smoothing w'. Fix $T \in \mathcal{F}_1$ and $F \in \mathcal{F}_2$ with $F \subset T$. Let $\{f\} = E(T) - E(F)$ and define $w'(T, F) = \frac{1}{n-1} \sum_{e \in E(T)} d_T(e, f)$. We have, using (1),

$$w'(\delta(T)) = \sum_{f \in E(T)} w'(T, T \setminus f) = \sum_{f \in E(T)} \left(\frac{1}{n-1} \sum_{e \in E(T)} d_T(e, f) \right)$$
$$= \frac{1}{n-1} \sum_{e \in E(T)} \left(\sum_{f \in E(T)} d_T(e, f) \right) = 1$$
(2)

for every $T \in \mathcal{F}_1$.

We proceed to estimate $w'(\delta(F))$ for $F \in \mathcal{F}_2$, but need a small amount of preparation first. Let k be a positive integer and let T be a tree. We say that $e \in E(T)$ is k-balanced if both components of $T \setminus e$ have at least (|V(T)| - k)/2 vertices. If E is the set of k-balanced edges in a tree T then every component of $T \setminus E$ containing a leaf of T has at least (|V(T)| - k)/2vertices. It follows that $|E| \leq k + 1$.

Let $F \in \mathcal{F}_2$ be a tree with components T_1 and T_2 such that $k = |V(T_1)| \le |V(T_2)|$. We have

$$w'(\delta(F)) = \sum_{u \in V(T_1)} \sum_{v \in V(T_2)} w'(F + uv, F) = \frac{1}{n-1} \sum_{u \in V(T_1)} \sum_{v \in V(T_2)} \left(\frac{1}{n-1} \sum_{e \in E(F+uv)} d_{F+uv}(e, uv) \right)$$
$$= \frac{1}{n-1} \sum_{e \in E(T_2) \cup \{uv\}} \left(\sum_{u \in V(T_1)} \sum_{v \in V(T_2)} d_{F+uv}(e, uv) \right).$$
(3)

Consider now $e \in E(T_2)$, suppose that e is not k-balanced and let T_e be the smaller component of $T_2 \setminus e$. Then $|V(T_e)| < \frac{(n-k)-k}{2}$. It follows that for every $u \in V(T_1)$ and $v \in V(T_e)$, the tree $(T_1 \cup T_e) + \{uv\}$ is the smaller component of $(F + uv) \setminus e$. Thus $d_{F+uv}(e, uv) = 1/(|V(T_e)| + k)$ for every such pair u, v. It follows that

$$\sum_{u \in V(T_1)} \sum_{v \in V(T_2)} d_{F+uv}(e, uv) \ge \frac{k|V(T_e)|}{|V(T_e)| + k} \ge \frac{k}{k+1}.$$
(4)

for every not k-balanced $e \in E(T_2)$. Further, we have

$$\sum_{u \in V(T_1)} \sum_{v \in V(T_2)} d_{F+uv}(uv, uv) \ge \frac{k(n-k)}{k} = n-k.$$
 (5)

Substituting the estimates in (4) and (5) into (3) and using the lower bound on the number of edges which are not k-balanced, we obtain

$$w'(\delta(F)) \ge \frac{1}{n-1} \left(\frac{k}{k+1} ((n-k-1) - (k+1)) + (n-k) \right) \ge 1 + \frac{k}{k+1} - \frac{3k+1}{n-1}.$$

Note that $w'(\delta(F)) \ge 3/2 - o(1)$, when k = o(n).

We now define $w'': E(B_n) \to \mathbb{R}_+$ be identically 1/(n-1). Then $w''(\delta(T)) = 1$ for every $T \in \mathcal{F}_1$. For $F \in \mathcal{F}_2$ with components T_1 and T_2 such that $k = |V(T_1)| \le |V(T_2)|$ we have $w''(\delta(F)) = k(n-k)/(n-1)$. We will use w'' to correct w' when $k = \Omega(n)$.

Let $\alpha := 1/\sqrt{n}$ and let $w := (1 - \alpha)w' + \alpha w''$. We have $w(\delta(T)) = 1$ for every $T \in \mathcal{F}_1$, as desired. For $F \in \mathcal{F}_2$ and k defined as above we use (5) to deduce

$$w(\delta(F)) \ge 1 + \frac{k}{k+1} - \frac{3k+1}{n-1} + \alpha \left(\frac{k(n-k)}{n-1} - 2\right).$$

If k = 1 then clearly $w(\delta(F)) \ge 3/2 + o(1)$. If $1 < k \le n/18$ then

$$w(\delta(F)) \ge 1 + \frac{2}{3} - \frac{3n/18 + 1}{n-1} + \frac{1}{\sqrt{n}} \left(\frac{2(n-2)}{n-1} - 2\right) \ge 3/2 + o(1).$$

Finally, if $k \ge n/18$ then

$$w(\delta(F)) \ge \frac{1}{\sqrt{n}} \left(\frac{(n/18)(n-n/18)}{n-1} - 2 \right) = \Omega(\sqrt{n}).$$

It follows that $w(\delta(F)) \ge 3/2 + o(1)$ for every F, as desired.

References

- Paul Balister, Béla Bollobás, and Stefanie Gerke, Connectivity of addable graph classes, J. Combin. Theory Ser. B 98 (2008), no. 3, 577–584. MR 2401130 (2009b:05234)
- 2. Colin McDiarmid, Connectivity for random graphs from abridge-addable class, manuscript.