Problem Set 2: Number Theory.

Classical results.

1. Polignac's formula. If p is a prime number and n a positive integer, then the exponent of p in n ! is

$$
\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\ldots .
$$

2. Wilson.

$$
(p-1)!\equiv-1(\bmod p)
$$

for any prime p.
3. Chinese Remainder theorem. Let $m_{1}, m_{2}, \ldots, m_{k}$ be pairwise positive integers greater than 1 , such that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $i \neq j$. Then for any integers $a_{1}, a_{2}, \ldots, a_{k}$ the system of congruences

$$
\begin{aligned}
x \equiv a_{1} & \left(\bmod m_{1}\right), \\
x \equiv a_{2} & \left(\bmod m_{2}\right), \\
& \cdots \\
x \equiv a_{k} & \left(\bmod m_{k}\right) .
\end{aligned}
$$

has solutions, and any two such solutions are congruent modulo $m=m_{1} m_{2} \ldots m_{k}$.

Problems.

1. Prove that n ! is not divisible by 2^{n} for any positive integer n.
2. The number 2^{29} has 9 distinct digits. Which digit is missing?
3. Putnam 1956. A2. Given any positive integer n, show that we can find a positive integer m such that $m n$ uses all ten digits when written in the usual base 10 .
4. Putnam 2000. A2. Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers. [Example: $0=0^{2}+0^{2}, 1=0^{2}+1^{2}, 2=1^{2}+1^{2}$.]
5. Putnam 2000. B2. Prove that the expression

$$
\frac{\operatorname{gcd}(m, n)}{n}\binom{n}{m}
$$

is an integer for all pairs of integers $n \geq m \geq 1$.
6. IMO 2002. The positive divisors of an integer $n>1$ are $1=d_{1}<d_{2}<\ldots<d_{k}=n$. Let $s=d_{1} d_{2}+d_{2} d_{3}+\ldots+d_{k-1} d_{k}$. Prove that $s<n^{2}$ and find all n for which s divides n^{2}.
7. Putnam 2021. B4. Let F_{0}, F_{1}, \ldots be the sequence of Fibonacci numbers, with $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. For $m>2$, let R_{m} be the remainder when the product $\prod_{k=1}^{F_{m}-1} k^{k}$ is divided by F_{m}. Prove that R_{m} is also a Fibonacci number.

