Classical results.

1. Fermat's little theorem. Let p be a prime number, and n a positive integer. Show that $n^{p}-n$ is divisible by p.
2. An Hadamard matrix is an $n \times n$ square matrix, all of whose entries are +1 or -1 , such that every pair of distinct rows is orthogonal. In other words, if the rows are considered to be vectors of length n, then the dot product between any two distinct row-vectors is zero. Show that there exist infinitely many Hadamard matrices.
3. Prove that the Fibonacci sequence satisfies the identity

$$
F_{2 n+1}=F_{n+1}^{2}+F_{n}^{2}
$$

for $n \geq 0$ (The Fibonacci sequence F_{n} is defined by $F_{0}=0, F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$.)

Problems.

1. Putnam 2001. A2. You have coins $C_{1}, C_{2}, \ldots, C_{n}$. For each k, C_{k} is biased so that, when tossed, it has probability $1 /(2 k+1)$ of falling heads. If the n coins are tossed, what is the probability that the number of heads is odd? Express the answer as a rational function of n.
2. GA 32. Show that if $a_{1}, a_{2}, \ldots, a_{n}$ are non-negative real numbers, then

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right) \geq\left(1+\sqrt[n]{a_{1} a_{2} \ldots a_{n}}\right)^{n} .
$$

3. USA 1997. An $n \times n$ matrix whose entries come from the set $S=\{1,2, \ldots, 2 n-1\}$ is called a silver matrix if, for each $i=1,2, \ldots, n$, the i-th row and the i-th column together contain all elements of S. Show that:
(a) there is no silver matrix for $n=1997$;
(b) silver matrices exist for infinitely many values of n.
4. Putnam 2006. B3. Let S be a finite set of points in the plane. A linear partition of S is an unordered pair $\{A, B\}$ of subsets of S such that $A \cup B=S, A \cap B=\emptyset$, and A and B lie on opposite sides of some straight line disjoint from S (A or B may be empty). Let L_{S} be the number of linear partitions of S. For each positive integer n, find the maximum of L_{S} over all sets S of n points.
5. Putnam 1996. A4. Let S be the set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose that
(a) $(a, b, c) \in S$ if and only if $(b, c, a) \in S$;
(b) $(a, b, c) \in S$ if and only if $(c, b, a) \notin S$;
(c) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to \mathbb{R} such that $g(a)<g(b)<g(c)$ implies $(a, b, c) \in S$.
6. Putnam 2000. B5. Let S_{0} be a finite set of positive integers. We define finite sets S_{1}, S_{2}, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of $a-1$ or a is in S_{n}. Show that there exist infinitely many integers N for which $S_{N}=S_{0} \cup\left\{N+a: a \in S_{0}\right\}$.

