Problem Solving Seminar Fall 2022.
 Problem Set 5: Combinatorics.

Classical results.

1. Show that the equation

$$
x_{1}+x_{2}+\ldots+x_{r}=n
$$

has exactly $\binom{n+r-1}{r-1}$ non-negative integer solutions.
2. Erdős-Ko-Rado. Let \mathcal{F} be a family of k element subsets of an n element set, with $n \geq 2 k$, such that every two sets in \mathcal{F} have a non-empty intersection. Then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

3. Turán. Show that a graph with n vertices and more than $\frac{t-1}{t} \frac{n^{2}}{2}$ edges contains a complete subgraph on $t+1$ vertices.
Problems.
4. Putnam 1954. A2. Given any five points in the interior of a square with side length 1 , show that two of the points are a distance apart less than $k=1 / \sqrt{2}$. Is this result true for a smaller k ?
Putnam 2003. A1. Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers, $n=a_{1}+a_{2}+\cdots+a_{k}$, with k an arbitrary positive integer and $a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq a_{1}+1$? For example, with $n=4$ there are four ways: $4,2+2,1+1+2$, $1+1+1+1$.
5. Putnam 1964. B2. Let S be a finite set, and suppose that a collection \mathcal{F} of subsets of S has the property that any two members of \mathcal{F} have at least one element in common, but \mathcal{F} cannot be extended (while keeping this property). Prove that \mathcal{F} contains exactly half of the subsets of S.
6. Putnam 1993. A3. Let \mathcal{P}_{n} be the set of subsets of $\{1,2, \ldots, n\}$. Let $c(n, m)$ be the number of functions $f: \mathcal{P}_{n} \rightarrow\{1,2, \ldots, m\}$ such that $f(A \cap B)=\min \{f(A), f(B)\}$. Prove that

$$
c(n, m)=\sum_{j=1}^{m} j^{n} .
$$

4. Putnam 1997. A5. Let N_{n} denote the number of ordered n-tuples of positive integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $1 / a_{1}+1 / a_{2}+\ldots+1 / a_{n}=1$. Determine whether N_{10} is even or odd.
5. Putnam 2021. B5. Say that an n-by- n matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ with integer entries is very odd if, for every nonempty subset S of $\{1,2, \ldots, n\}$, the $|S|$-by- $|S|$ submatrix $\left(a_{i j}\right)_{i, j \in S}$ has odd determinant. Prove that if A is very odd, then A^{k} is very odd for every $k \geq 1$.
6. Putnam 2018. B6. Let S be the set of sequences of length 2018 whose terms are in the set $\{1,2,3,4,5,6,10\}$ and sum to 3860 . Prove that the cardinality of S is at most

$$
2^{3860} \cdot\left(\frac{2018}{2048}\right)^{2018}
$$

