Problem Solving Seminar Fall 2022. Problem Set 5: Combinatorics.

Classical results.

1. Show that the equation

 $x_1 + x_2 + \ldots + x_r = n$

has exactly $\binom{n+r-1}{r-1}$ non-negative integer solutions.

2. Erdős-Ko-Rado. Let \mathcal{F} be a family of k element subsets of an n element set, with $n \geq 2k$, such that every two sets in \mathcal{F} have a non-empty intersection. Then

$$|\mathcal{F}| \le \binom{n-1}{k-1}.$$

3. Turán. Show that a graph with n vertices and more than $\frac{t-1}{t}\frac{n^2}{2}$ edges contains a complete subgraph on t + 1 vertices.

Problems.

1. Putnam 1954. A2. Given any five points in the interior of a square with side length 1, show that two of the points are a distance apart less than $k = 1/\sqrt{2}$. Is this result true for a smaller k?

Putnam 2003. A1. Let *n* be a fixed positive integer. How many ways are there to write *n* as a sum of positive integers, $n = a_1 + a_2 + \cdots + a_k$, with *k* an arbitrary positive integer and $a_1 \le a_2 \le \cdots \le a_k \le a_1 + 1$? For example, with n = 4 there are four ways: 4, 2+2, 1+1+2, 1+1+1+1.

- 2. Putnam 1964. B2. Let S be a finite set, and suppose that a collection \mathcal{F} of subsets of S has the property that any two members of \mathcal{F} have at least one element in common, but \mathcal{F} cannot be extended (while keeping this property). Prove that \mathcal{F} contains exactly half of the subsets of S.
- 3. Putnam 1993. A3. Let \mathcal{P}_n be the set of subsets of $\{1, 2, \ldots, n\}$. Let c(n, m) be the number of functions $f : \mathcal{P}_n \to \{1, 2, \ldots, m\}$ such that $f(A \cap B) = \min\{f(A), f(B)\}$. Prove that

$$c(n,m) = \sum_{j=1}^{m} j^n.$$

- 4. Putnam 1997. A5. Let N_n denote the number of ordered *n*-tuples of positive integers (a_1, a_2, \ldots, a_n) such that $1/a_1 + 1/a_2 + \ldots + 1/a_n = 1$. Determine whether N_{10} is even or odd.
- 5. **Putnam 2021. B5.** Say that an *n*-by-*n* matrix $A = (a_{ij})_{1 \le i,j \le n}$ with integer entries is very odd if, for every nonempty subset S of $\{1, 2, ..., n\}$, the |S|-by-|S| submatrix $(a_{ij})_{i,j \in S}$ has odd determinant. Prove that if A is very odd, then A^k is very odd for every $k \ge 1$.
- 6. Putnam 2018. B6. Let S be the set of sequences of length 2018 whose terms are in the set $\{1, 2, 3, 4, 5, 6, 10\}$ and sum to 3860. Prove that the cardinality of S is at most

$$2^{3860} \cdot \left(\frac{2018}{2048}\right)^{2013}$$