Classical results.

1. Euler. For a positive integer n and any integer a relatively prime to n one has

$$a^{\phi(n)} \equiv 1 \pmod{n},$$

where $\phi(n)$ is the number of positive integers between 1 and n relatively prime to n.

2. **Polignac's formula.** If *p* is a prime number and *n* a positive integer, then the exponent of *p* in *n*! is

$$\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots$$

3. Chinese Remainder theorem. Let m_1, m_2, \ldots, m_k be pairwise positive integers greater than 1, such that $gcd(m_i, m_j) = 1$ for $i \neq j$. Then for any integers a_1, a_2, \ldots, a_k the system of congruences

$$x \equiv a_1 \qquad (\mod m_1),$$

$$x \equiv a_2 \qquad (\mod m_2),$$

$$\dots$$

$$x \equiv a_k \qquad (\mod m_k).$$

has solutions, and any two such solutions are congruent modulo $m = m_1 m_2 \dots m_k$.

Problems.

- 1. Prove that n! is not divisible by 2^n for any positive integer n.
- 2. Prove that for every *n*, there exist *n* consecutive integers each of which is divisible by two different primes.
- 3. Putnam 1956. A2. Given any positive integer n, show that we can find a positive integer m such that mn uses all ten digits when written in the usual base 10.
- 4. IMO 1970. Prove that there are no positive integers n such that the set $\{n+1, n+2, \ldots, n+6\}$ can be divided into two sets with the product of elements in one set equal to the product of elements in the other set.
- 5. Putnam 2000. A2. Prove that there exist infinitely many integers n such that n, n + 1, n + 2 are each the sum of the squares of two integers. [Example: $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2$, $2 = 1^2 + 1^2$.]
- 6. USA 1991. Let n be an arbitrary positive integer. Show that the following sequence is eventually constant modulo n:

$$2, 2^2, 2^{2^2}, 2^{2^{2^2}}, 2^{2^{2^{2^2}}}, 2^{2^{2^{2^2}}}, \dots$$

- 7. **IMO 2002.** The positive divisors of an integer n > 1 are $1 = d_1 < d_2 < \ldots < d_k = n$. Let $s = d_1d_2 + d_2d_3 + \ldots + d_{k-1}d_k$. Prove that $s < n^2$ and find all n for which s divides n^2 .
- 8. **Putnam 1996.** A6. The sequence a_n is defined by $a_1 = 1, a_2 = 2, a_3 = 24$, and, for $n \ge 4$,

$$a_n = \frac{6a_{n-1}^2 a_{n-3} - 8a_{n-1}a_{n-2}^2}{a_{n-2}a_{n-3}}$$

Show that, for all n, a_n is an integer multiple of n.