Problem Solving Seminar Fall 2021. Problem Set 2: Number Theory.

Classical results.

1. Euler. For a positive integer n and any integer a relatively prime to n one has

$$
a^{\phi(n)} \equiv 1(\bmod n),
$$

where $\phi(n)$ is the number of positive integers between 1 and n relatively prime to n.
2. Polignac's formula. If p is a prime number and n a positive integer, then the exponent of p in n ! is

$$
\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\ldots .
$$

3. Chinese Remainder theorem. Let $m_{1}, m_{2}, \ldots, m_{k}$ be pairwise positive integers greater than 1 , such that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $i \neq j$. Then for any integers $a_{1}, a_{2}, \ldots, a_{k}$ the system of congruences

$$
\begin{array}{ll}
x \equiv a_{1} & \left(\bmod m_{1}\right), \\
x \equiv a_{2} & \left(\bmod m_{2}\right), \\
& \ldots \\
x \equiv a_{k} & \left(\bmod m_{k}\right) .
\end{array}
$$

has solutions, and any two such solutions are congruent modulo $m=m_{1} m_{2} \ldots m_{k}$.

Problems.

1. Prove that $n!$ is not divisible by 2^{n} for any positive integer n.
2. Prove that for every n, there exist n consecutive integers each of which is divisible by two different primes.
3. Putnam 1956. A2. Given any positive integer n, show that we can find a positive integer m such that $m n$ uses all ten digits when written in the usual base 10 .
4. IMO 1970. Prove that there are no positive integers n such that the set $\{n+1, n+2, \ldots, n+6\}$ can be divided into two sets with the product of elements in one set equal to the product of elements in the other set.
5. Putnam 2000. A2. Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers. [Example: $0=0^{2}+0^{2}, 1=0^{2}+1^{2}, 2=1^{2}+1^{2}$.]
6. USA 1991. Let n be an arbitrary positive integer. Show that the following sequence is eventually constant modulo n :

$$
2,2^{2}, 2^{2^{2}}, 2^{2^{2^{2}}}, 2^{2^{2^{2^{2}}}}, 2^{2^{2^{2^{2^{2}}}}}, \cdots
$$

7. IMO 2002. The positive divisors of an integer $n>1$ are $1=d_{1}<d_{2}<\ldots<d_{k}=n$. Let $s=d_{1} d_{2}+d_{2} d_{3}+\ldots+d_{k-1} d_{k}$. Prove that $s<n^{2}$ and find all n for which s divides n^{2}.
8. Putnam 1996. A6. The sequence a_{n} is defined by $a_{1}=1, a_{2}=2, a_{3}=24$, and, for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}}
$$

Show that, for all n, a_{n} is an integer multiple of n.

