Problem Solving Seminar Fall 2021. Problem Set 7: Calculus.

Classical results.

1. Every continuous mapping of a circle into a line carries some pair of diametrically opposite points to the same point.
2. Leibniz formula.

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

3. Gaussian integral.

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Problems.

1. Putnam 1964. B1. Let a_{1}, a_{2}, \ldots be positive integers such that $\sum_{i=1}^{\infty} \frac{1}{a_{i}}$ converges. For each n, let b_{n} denote the number of positive integers i for which $a_{i} \leq n$. Prove that $\lim _{n \rightarrow \infty} \frac{b_{n}}{n}=0$.
2. Putnam 2012. B1. Let S be a class of functions from $[0, \infty)$ to $[0, \infty)$ that satisfies:
(i) The functions $f_{1}(x)=e^{x}-1$ and $f_{2}(x)=\ln (x+1)$ are in S;
(ii) If $f(x)$ and $g(x)$ are in S, the functions $f(x)+g(x)$ and $f(g(x))$ are in S;
(iii) If $f(x)$ and $g(x)$ are in S and $f(x) \geq g(x)$ for all $x \geq 0$, then the function $f(x)-g(x)$ is in S.

Prove that if $f(x)$ and $g(x)$ are in S, then the function $f(x) g(x)$ is also in S.
3. Putnam 1991. B2. Suppose f and g are non-constant, differentiable, real-valued functions on \mathbb{R}. Furthermore, suppose that for each pair of real numbers x and y,

$$
\begin{aligned}
& f(x+y)=f(x) f(y)-g(x) g(y), \\
& g(x+y)=f(x) g(y)+g(x) f(y) .
\end{aligned}
$$

If $f^{\prime}(0)=0$ prove that $(f(x))^{2}+(g(x))^{2}=1$ for all real x.
4. Putnam 2007. B2. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=$ 0 . Prove that for every $\alpha \in(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right| .
$$

5. Putnam 2013. A3. Suppose that the real numbers $a_{0}, a_{1}, \ldots, a_{n}$ and x, with $0<x<1$, satisfy

$$
\frac{a_{0}}{1-x}+\frac{a_{1}}{1-x^{2}}+\cdots+\frac{a_{n}}{1-x^{n+1}}=0 .
$$

Prove that there exists a real number y with $0<y<1$ such that

$$
a_{0}+a_{1} y+\cdots+a_{n} y^{n}=0 .
$$

6. Putnam 2008. A4. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \leq e \\ x f(\ln x) & \text { if } x>e\end{cases}
$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?
7. Putnam 1993. B4. The function $K(x, y)$ is positive and continuous for $0 \leq x \leq 1,0 \leq y \leq 1$, and the functions $f(x)$ and $g(x)$ are positive and continuous for $0 \leq x \leq 1$. Suppose that

$$
\int_{0}^{1} f(y) K(x, y) d y=g(x) \quad \text { and } \quad \int_{0}^{1} g(y) K(x, y) d y=f(x)
$$

for all $0 \leq x \leq 1$. Show that $f(x)=g(x)$ for $0 \leq x \leq 1$.

