MATH 350: Graph Theory and Combinatorics. Fall 2015.

Assignment #3: Menger’s theorem, vertex covers and network flows.

1.  Show that 7(G) < 5(|E(G)| + 1) for every connected graph G.

Solution: By induction on |V(G)|. Base case for |V(G)| < 2 is routine.
Induction step (for |[V(G)| > 3): Let T be a spanning tree of G. Let L be
the set of leaves of T'. If for some u € L, the degree of u in G is at least
two, we apply the induction hypothesis to G \ v to obtain

7(G) ST(G\U)+1S%(‘E(G\U)‘—Fl)—l—lﬁ%(|E(G)’+1),

as desired. Otherwise, consider a leaf w of T'\ L. (We have V(T'\ L) # 0,
as |[V(G)| > 3.) Let L' be the set of leaves in L adjacent to w. Let
G' == G\ w)\ L. Note that, G' is connected and |E(G)| < |E(G)| — 2.
Further, if X is vertex cover of G' then X U {w} is a vertex cover of G,.
We apply the induction hypothesis to G’ to obtain,

1 1
T(G) < T(G/) +1< B (‘E(G/ﬂ + 1) +1< B (|E(G)| + 1) ,
completing the proof.

2. Let v be a vertex in a 2-connected graph G. Show that v has a
neighbor u such that G \ u \ v is connected.

Solution: Let U be the set of neighbors of v in G. Let T be the minimum
connected subgraph of G \ v such that U C V(7). It is easy to see that
T is a tree and that every leaf of T' is a neighbor of v. Let u be a leaf of
T. Then T \ u is connected. Suppose for a contradiction that G \ u \ v
is not connected and consider a component C' of G'\ u \ v which does not
contain 7"\ u. Thus C contains no neighbor of v and so it is a connected
component of G \ u. It follows that G \ u is not connected, contradicting
2-connectivity of G.

3. Let G be a connected graph in which every vertex has degree three.
Show that if G’ has no cut-edge then every two edges of G lie on a common
cycle.
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Figure 1: Counterexample for Problem 6b).

Solution: Note that GG is loopless, as otherwise it would contain a cut-
edge. Consider e, es € F(G) and let x;,y; be the ends of e; for i = 1,2. If
there exist two vertex-disjoint paths from x1,y; to x2,yo then these paths
together with e; and e; form the required cycle. Otherwise, by Menger’s
theorem, there exists a separation (A, B) of order 1 with x1,y; € A, X2, €
B. Let {v} = AN B. Let uy,us,us be the other ends of edges incident
to v. (These three vertices are not necessarily distinct.) Without loss of
generality, u1 € A, us, uz € B. Then the edge joining u; and v is a cut-edge,
a contradiction.

4.

a) Distinct u,v € V(G) are k-linked if there are k paths P, ..., P, of G
from u to v so that E(P,NP;) =0 (1 <i< j<k). Suppose u,v,w
are distinct and u, v are k-linked, and so are v, w. Does it follow that
u,w are k-linked?

Solution: Yes. By Theorem 10.4, if u and w are not k-linked then
there exists X C V(G) with v in X, w ¢ X and |§(X)| < k. By
symmetry, we may assume v € X. Then the opposite direction of
Theorem 10.4 implies that v and w are not k-linked.

b) Subsets X,Y C V(G) are k-joined if | X| = |Y| = k and there are k
paths P, ..., P; of G from X to Y sothat V(P,NP) =0 (1 <i<j<
k). Suppose X,Y,Z C V(G) and X,Y are k-joined, and so are Y, Z.
Does it follow that X, Z are k-joined?

Solution: No. See Figure 1 for an example with k£ = 2.

0. Let G be a directed graph and for each edge e let ¢(e) > 0 be an



integer, so that for every vertex v,

> dle)= > ¢le)
)

e€d—(v) ecdt(v

Show there is a list 1, ..., C}, of directed cycles (possibly with repetition)
so that for every edge e of G,

{i:1<i<n, ec EC)} = aoe).

Solution: Induction on S := ) g ¢(€). Base case: S = 0 is trivial.
For the induction step, it suffices to find a directed cycle C' in G so that
¢(e) > 1 for every edge e € E(G), as one can then apply the induction
hypothesis to

o(e)—1, ifee E(G)

Let e be an edge of G with ¢(e) > 1, a tail v and a head v. Then ¢
restricted to G \ e is a v-u-flow of value 1 and by Lemma 11.3 there exists
a directed path P in G\ e so that ¢ is positive on every edge of the path.
The path P together with e forms the desired cycle.

Se) i {qs(e), if e ¢ £(C)



