## MATH 350: Graph Theory and Combinatorics. Fall 2015.

Assignment #3: Menger's theorem, vertex covers and network flows.

**1.** Show that  $\tau(G) \leq \frac{1}{2}(|E(G)| + 1)$  for every connected graph G.

**Solution:** By induction on |V(G)|. Base case for  $|V(G)| \le 2$  is routine. Induction step (for  $|V(G)| \ge 3$ ): Let T be a spanning tree of G. Let L be the set of leaves of T. If for some  $u \in L$ , the degree of u in G is at least two, we apply the induction hypothesis to  $G \setminus v$  to obtain

$$\tau(G) \le \tau(G \setminus v) + 1 \le \frac{1}{2} \left( |E(G \setminus v)| + 1 \right) + 1 \le \frac{1}{2} \left( |E(G)| + 1 \right),$$

as desired. Otherwise, consider a leaf w of  $T \setminus L$ . (We have  $V(T \setminus L) \neq \emptyset$ , as  $|V(G)| \geq 3$ .) Let L' be the set of leaves in L adjacent to w. Let  $G' := G \setminus w \setminus L'$ . Note that, G' is connected and  $|E(G')| \leq |E(G)| - 2$ . Further, if X is vertex cover of G' then  $X \cup \{w\}$  is a vertex cover of G,. We apply the induction hypothesis to G' to obtain,

$$\tau(G) \le \tau(G') + 1 \le \frac{1}{2} \left( |E(G')| + 1 \right) + 1 \le \frac{1}{2} \left( |E(G)| + 1 \right),$$

completing the proof.

**2.** Let v be a vertex in a 2-connected graph G. Show that v has a neighbor u such that  $G \setminus u \setminus v$  is connected.

**Solution:** Let U be the set of neighbors of v in G. Let T be the minimum connected subgraph of  $G \setminus v$  such that  $U \subseteq V(T)$ . It is easy to see that T is a tree and that every leaf of T is a neighbor of v. Let u be a leaf of T. Then  $T \setminus u$  is connected. Suppose for a contradiction that  $G \setminus u \setminus v$  is not connected and consider a component C of  $G \setminus u \setminus v$  which does not contain  $T \setminus u$ . Thus C contains no neighbor of v and so it is a connected component of  $G \setminus u$ . It follows that  $G \setminus u$  is not connected, contradicting 2-connectivity of G.

**3.** Let G be a connected graph in which every vertex has degree three. Show that if G has no cut-edge then every two edges of G lie on a common cycle.



Figure 1: Counterexample for Problem 6b).

**Solution:** Note that G is loopless, as otherwise it would contain a cutedge. Consider  $e_1, e_2 \in E(G)$  and let  $x_i, y_i$  be the ends of  $e_i$  for i = 1, 2. If there exist two vertex-disjoint paths from  $x_1, y_1$  to  $x_2, y_2$  then these paths together with  $e_1$  and  $e_2$  form the required cycle. Otherwise, by Menger's theorem, there exists a separation (A, B) of order 1 with  $x_1, y_1 \in A, x_2, y_2 \in$ B. Let  $\{v\} = A \cap B$ . Let  $u_1, u_2, u_3$  be the other ends of edges incident to v. (These three vertices are not necessarily distinct.) Without loss of generality,  $u_1 \in A, u_2, u_3 \in B$ . Then the edge joining  $u_1$  and v is a cut-edge, a contradiction.

## **4**.

a) Distinct  $u, v \in V(G)$  are k-linked if there are k paths  $P_1, ..., P_k$  of G from u to v so that  $E(P_i \cap P_j) = \emptyset$   $(1 \le i < j \le k)$ . Suppose u, v, w are distinct and u, v are k-linked, and so are v, w. Does it follow that u, w are k-linked?

**Solution:** Yes. By Theorem 10.4, if u and w are not k-linked then there exists  $X \subseteq V(G)$  with u in X,  $w \notin X$  and  $|\delta(X)| < k$ . By symmetry, we may assume  $v \in X$ . Then the opposite direction of Theorem 10.4 implies that v and w are not k-linked.

**b)** Subsets  $X, Y \subseteq V(G)$  are k-joined if |X| = |Y| = k and there are k paths  $P_1, ..., P_k$  of G from X to Y so that  $V(P_i \cap P_j) = \emptyset$   $(1 \le i < j \le k)$ . Suppose  $X, Y, Z \subseteq V(G)$  and X, Y are k-joined, and so are Y, Z. Does it follow that X, Z are k-joined?

**Solution:** No. See Figure 1 for an example with k = 2.

**5.** Let G be a directed graph and for each edge e let  $\phi(e) \ge 0$  be an

integer, so that for every vertex v,

$$\sum_{e \in \delta^-(v)} \phi(e) = \sum_{e \in \delta^+(v)} \phi(e)$$

Show there is a list  $C_1, ..., C_n$  of directed cycles (possibly with repetition) so that for every edge e of G,

$$|\{i : 1 \le i \le n, e \in E(C_i)\}| = \phi(e).$$

**Solution:** Induction on  $S := \sum_{e \in E(G)} \phi(e)$ . Base case: S = 0 is trivial. For the induction step, it suffices to find a directed cycle C in G so that  $\phi(e) \ge 1$  for every edge  $e \in E(G)$ , as one can then apply the induction hypothesis to

$$\phi'(e) := \begin{cases} \phi(e), & \text{if } e \notin E(G) \\ \phi(e) - 1, & \text{if } e \in E(G) \end{cases}$$

Let e be an edge of G with  $\phi(e) \geq 1$ , a tail u and a head v. Then  $\phi$  restricted to  $G \setminus e$  is a *v*-*u*-flow of value 1 and by Lemma 11.3 there exists a directed path P in  $G \setminus e$  so that  $\phi$  is positive on every edge of the path. The path P together with e forms the desired cycle.