MATH 550: Combinatorics. Winter 2013.

Assignment # 2: Turán- and Ramsey-type problems.

Due in class on Monday, March 11th.

1. Let (X, \mathcal{F}) be a set system. A *k*-sunflower in \mathcal{F} is a collection of distinct sets $F_1, F_2, \ldots, F_k \in \mathcal{F}$ such that for some $Z \subseteq X$ we have $F_i \cap F_j = Z$ for all $1 \leq i < j \leq k$. (The intersection of every pair of distinct sets in the sunflower is the same.)

Let c(k,r) denote the maximum possible size of a set system \mathcal{F} such that $|F| \leq r$ for every $F \in \mathcal{F}$, and \mathcal{F} does not contain a k-sunflower. Show that

$$(k-1)^r \le c(k,r) \le (k-1)^r r!$$

for all $k, r \geq 1$.

2. Let $\mathcal{A} \subseteq \mathbb{N}^{(3)}$ satisfy $|\mathcal{A}| = 50$ and $|\partial \mathcal{A}| = 27$. Show that for some $Z \subseteq X \subseteq \mathbb{N}$ with |X| = 8, |Z| = 2, we have

$$\mathcal{A} = \{ A \in \mathbb{N}^{(3)} \mid A \subset X, Z \not\subset A \}.$$

3. Let G be a graph on n vertices for some $n \ge 3$ with $|G| \ge \lfloor \frac{n^2}{4} \rfloor + 1$.

- a) Show that G contains at least $\lfloor \frac{n}{2} \rfloor$ triangles.
- b) Show that the bound in a) is tight: For every $n \ge 3$ there exists a graph G on n vertices with $|G| = \lfloor \frac{n^2}{4} \rfloor + 1$ containing exactly $\lfloor \frac{n}{2} \rfloor$ triangles.

4. Let *H* be a fixed *r*-graph of order *k*. Show that for every $\varepsilon > 0$ there exists $\delta > 0$ and $n_0 > 0$ with the following properties. If *G* is an *r*-graph of order $n \ge n_0$ with $|G| \ge (\pi(H) + \varepsilon) \binom{n}{r}$ then at least $\delta\binom{n}{k}$ subsets of V(G) of size *k* induce an *r*-graph containing *H*.

5. Show that for every positive integer t there exists $\delta > 0$ such that the following holds. If G is a graph not containing K_t on n vertices and every vertex of G belongs to at least $(\frac{t-2}{t-1}-\delta)n$ edges then G is (t-1)-colorable.

6. Hypergraph Ramsey theorem. Show that for all positive integers r, k_1 and k_2 there exists a positive integer $n = R^{(r)}(k_1, k_2)$ so that the following holds. If elements of $[n]^{(r)}$ are colored in colors red and blue then there is a set $Z \subseteq [n]$ such that either $|Z| = k_1$ and all elements of $Z^{(r)}$ are red, or $|Z| = k_2$ and all elements of $Z^{(r)}$ are blue.

(*Hint*: Use induction on r and, for given r, induction on $k_1 + k_2$. Consider all hyperedges containing a given vertex and attempt to imitate the proof of Ramsey's theorem.)

7. Schur's theorem. Show that for every positive integer k there exists a positive integer n satisfying the following. In every coloring of [n] with k colors it is possible to find a triple of (not necessarily distinct) integers x, y, z of the same color so that x + y = z. (*Hint*: Use Ramsey's theorem.)