MATH 550: Combinatorics. Winter 2013.

Assignment \# 2: Turán- and Ramsey-type problems.

Due in class on Monday, March 11th.

1. Let (X, \mathcal{F}) be a set system. A k-sunflower in \mathcal{F} is a collection of distinct sets $F_{1}, F_{2}, \ldots, F_{k} \in \mathcal{F}$ such that for some $Z \subseteq X$ we have $F_{i} \cap F_{j}=Z$ for all $1 \leq i<j \leq k$. (The intersection of every pair of distinct sets in the sunflower is the same.)
Let $c(k, r)$ denote the maximum possible size of a set system \mathcal{F} such that $|F| \leq r$ for every $F \in \mathcal{F}$, and \mathcal{F} does not contain a k-sunflower. Show that

$$
(k-1)^{r} \leq c(k, r) \leq(k-1)^{r} r!
$$

for all $k, r \geq 1$.
2. Let $\mathcal{A} \subseteq \mathbb{N}^{(3)}$ satisfy $|\mathcal{A}|=50$ and $|\partial \mathcal{A}|=27$. Show that for some $Z \subseteq X \subseteq \mathbb{N}$ with $|X|=8,|Z|=2$, we have

$$
\mathcal{A}=\left\{A \in \mathbb{N}^{(3)} \mid A \subset X, Z \not \subset A\right\} .
$$

3. Let G be a graph on n vertices for some $n \geq 3$ with $|G| \geq\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$.
a) Show that G contains at least $\left\lfloor\frac{n}{2}\right\rfloor$ triangles.
b) Show that the bound in a) is tight: For every $n \geq 3$ there exists a graph G on n vertices with $|G|=\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$ containing exactly $\left\lfloor\frac{n}{2}\right\rfloor$ triangles.
4. Let H be a fixed r-graph of order k. Show that for every $\varepsilon>0$ there exists $\delta>0$ and $n_{0}>0$ with the following properties. If G is an r-graph of order $n \geq n_{0}$ with $|G| \geq(\pi(H)+\varepsilon)\binom{n}{r}$ then at least $\delta\binom{n}{k}$ subsets of $V(G)$ of size k induce an r-graph containing H.
5. Show that for every positive integer t there exists $\delta>0$ such that the following holds. If G is a graph not containing K_{t} on n vertices and every vertex of G belongs to at least $\left(\frac{t-2}{t-1}-\delta\right) n$ edges then G is $(t-1)$-colorable.
6. Hypergraph Ramsey theorem. Show that for all positive integers r, k_{1} and k_{2} there exists a positive integer $n=R^{(r)}\left(k_{1}, k_{2}\right)$ so that the following holds. If elements of $[n]^{(r)}$ are colored in colors red and blue then there is a set $Z \subseteq[n]$ such that either $|Z|=k_{1}$ and all elements of $Z^{(r)}$ are red, or $|Z|=k_{2}$ and all elements of $Z^{(r)}$ are blue.
(Hint: Use induction on r and, for given r, induction on $k_{1}+k_{2}$. Consider all hyperedges containing a given vertex and attempt to imitate the proof of Ramsey's theorem.)
7. Schur's theorem. Show that for every positive integer k there exists a positive integer n satisfying the following. In every coloring of [n] with k colors it is possible to find a triple of (not necessarily distinct) integers x, y, z of the same color so that $x+y=z$.
(Hint: Use Ramsey's theorem.)
