MATH 550: Combinatorics. Winter 2013.

Assignment \#1: Set systems. Due in class on Monday, February 18th.

1. Bollobás 2.4. Let $\mathcal{F} \subseteq[n]^{(2)}$ be such that if $Y \subset n,|Y|=n-2$, then there exist distinct $F_{1}, F_{2} \in \mathcal{F}$ inducing the same subset of Y, that is $F_{1} \cap Y=F_{2} \cap Y$. Show that

$$
|\mathcal{F}| \geq \frac{3 n-1}{2}
$$

Show also that for every $n \geq 3$ there exists a set system of size $\left\lceil\frac{3 n-1}{2}\right\rceil$ satisfying the conditions.
2. Bollobás 3.9. Suppose $\mathcal{A} \subseteq \mathcal{P}([n])$ is an ideal, i.e. if $B \subseteq A$ and $A \in \mathcal{A}$ then $B \in \mathcal{A}$. Use the local LYM inequality to show that the average size of an element of \mathcal{A} is at most $n / 2$.
3. Let n be a positive integer. Consider a set $\mathcal{T}_{n}=\{0,1,2\}^{n}$ consisting of all sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{i} \in\{0,1,2\}$ for $i \in[n]$.
We define a partial order on \mathcal{T}_{n} so that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ if and only if $a_{i} \leq b_{i}$ for every $i \in[n]$. (For example $(1,0,1) \leq(1,2,2)$, while $(1,0,1)$ and $(0,1,2)$ are incomparable.)
For a sequence $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ define the weight of \mathbf{a} to be $w(\mathbf{a}):=a_{1}+a_{2}+\ldots+a_{n}$. A chain $\mathcal{C}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right)$ with $\mathbf{a}_{1}<\mathbf{a}_{2}<\ldots<\mathbf{a}_{k}$ in \mathcal{T}_{n} is called symmetric if $w\left(\mathbf{a}_{i+1}\right)=w\left(\mathbf{a}_{i}\right)+1$ for $i=1,2, \ldots, k-1$ and $w\left(\mathbf{a}_{1}\right)+w\left(\mathbf{a}_{k}\right)=2 n$.
a) Show that \mathcal{T}_{n} allows a symmetric chain decomposition.
b) Give an example of an antichain in \mathcal{T}_{n} which intersects every symmetric chain. Deduce that this antichain is maximum. (An antichain is a subset $\mathcal{A} \in \mathcal{T}_{n}$ such that for $\mathbf{a}, \mathbf{b} \in \mathcal{A}$ if $\mathbf{a} \leq \mathbf{b}$ then $\mathbf{a}=\mathbf{b}$, i. e. no two distinct elements of \mathcal{A} are comparable.)
4. Let p be a prime and $n<p$ a positive integer. Show that for any $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z} / p \mathbb{Z} \backslash\{0\}$ and any $x \in \mathbb{Z} / p \mathbb{Z}$, the number of subsets $A \in \mathcal{P}([n])$ such that $\sum_{i \in A} x_{i}=x$ is at most $\binom{n}{\lfloor n / 2\rfloor}$. (Hint: Define sparse set system appropriately and emulate Kleitman's solution to the Littlewood-Offord problem.)
5. Hilton, 1974. Let $1 \leq g \leq h \leq n$ be integers with $g+h \leq n$. Let $\mathcal{F} \subseteq \mathcal{P}([n])$ be an intersecting family and suppose that $g \leq|F| \leq h$ for every $F \in \mathcal{F}$. Use Erdős-Ko-Rado theorem to show that

$$
|\mathcal{F}| \leq \sum_{i=g}^{h}\binom{n-1}{j-1}
$$

6. Let $r \geq 1$ be an integer, $\mathcal{A} \subseteq X^{(r)}$ and $i, j \in X$. Write down a detailed proof of the inequality

$$
\left|\partial \tilde{R}_{i j}(\mathcal{A})\right| \leq|\partial \mathcal{A}| .
$$

7. What is the minimum size of compressed $\mathcal{A} \subseteq \mathbb{N}^{(3)}$ such that $\{1,10,100\},\{1,20,50\} \in$ \mathcal{A} ?
