MATH 550: Combinatorics. Winter 2013.

Final exam.

Due electronically at snorin@math.mcgill.ca by 5PM on Tuesday, April 30th.

1. Turan-type problems.

Consider 3-graphs $F_{4}=\{a b c, a b d, a c d\}$ and $F_{5}=\{a b c, a b d, c d e\}$. We say that a 3 -graph G is cancellative if it contains neither F_{4} nor F_{5} as a subgraph.
a) Let G be a 3 -partite 3 -graph on n vertices. (That is there exists a partition $\left(A_{1}, A_{2}, A_{3}\right)$ of $V(G)$ so that $\left|e \cap A_{i}\right|=1$ for every $e \in G$ and every $i=1,2,3$.) Show that G is cancellative.

Let G be a cancellative 3-graph. For every $x \in V(G)$ define a graph L_{x} on $V(G)$ so that $\{y, z\} \in L_{x}$ if and only if $\{x, y, z\} \in G$.
b) Show that for every $\{x, y, z\} \in G$ one has $L_{x} \cap L_{y}=\emptyset$.
c) Suppose that for some $\{x, y, z\} \in G$ the graph $L_{x} \cup L_{y} \cup L_{z}$ contains a K_{4} subgraph with the vertex set $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. Show that $L_{x}, L_{y}, L_{z}, L_{w_{1}}, L_{w_{2}}, L_{w_{3}}$ and $L_{w_{4}}$ are pairwise disjoint.
d) Deduce that $\left|L_{x}\right| \leq\left(\frac{2}{9}+o(1)\right)\binom{n}{2}$ for some $x \in V(G)$.
e) Conclude that $\pi\left(\left\{F_{4}, F_{5}\right\}\right)=\frac{2}{9}$.

2. Ramsey Numbers.

Let G be a graph with $V(G)=[17]$ and $x, y \in V(G)$ adjacent if and only if

$$
(x-y) \bmod 17 \in\{ \pm 1, \pm 2, \pm 4, \pm 8\} .
$$

a) Show that neither G nor the complement of G contains a K_{4} subgraph.
b) Deduce that $R(4,4)=18$.

3. Convexity \& Ramsey theory.

Show that for all positive integers n, d there exists a positive integer N such that in every set of N points $P \subseteq \mathbb{R}^{d}$ in general position one can find a subset of size n in convex position. (A set of P is in general position in \mathbb{R}^{d} if no set of $d+1$ points in P is affinely dependent.)

4. Szemeredi-Trotter theorem.

Show that there exists a constant $C>0$ so that for any finite set $P \subseteq \mathbb{R}^{2}$ one has

$$
|\{(a, b) \mid a, b \in P,\|a-b\|=1\}| \leq C|P|^{4 / 3} .
$$

(Hint: Modify Szemeredi-Trotter theorem so that it applies to circles instead of lines.)

5. Combinatorial Nullstellensatz.

Let (X, \mathcal{F}) be a set-system such that $|\mathcal{F}|>2|X|$. Show that there exists $\mathcal{F}^{\prime} \subseteq \mathcal{F}, \mathcal{F}^{\prime} \neq \emptyset$ such that for every $x \in X$ the number of elements of \mathcal{F}^{\prime} containing x is divisible by 3 .
6. Maximum Cut.

Let G be a graph with $V(G)=[2 n]^{(n)}$ - the set of all n element subsets of a $2 n$ element set. Let $S, T \in V(G)$ be adjacent if and only if $|S \cap T|=1$.
a) Show that if n is odd then

$$
\frac{\operatorname{MaxCut}(G)}{|E(G)|} \leq \frac{n-1}{n}
$$

b) Show that

$$
\frac{\operatorname{MaxCut}^{\circ}(G)}{|E(G)|} \geq \frac{n-1}{n}
$$

