The Relative Pure-Entire Factorization for Geometric Morphisms

Marta Bunge

October 19, 2000

Abstract

A locale A in a topos \mathcal{E} is said to be a $Stone\ locale$ if it is a compact and zero-dimensional locale. An equivalent description says that A is the locale of ideals of a Boolean algebra in \mathcal{E} . A geometric morphism $\varphi \colon \mathcal{F} \to \mathcal{E}$ is called *entire* (respect. pure) if φ is localic and defined by a Stone locale (respect. if $\varphi_*(2_{\mathcal{F}}) \cong (2_{\mathcal{E}})$, where 2 = 1 + 1). In [P.T.Johnstone, Factorization Theorems for Geometric Morphisms II, Categorical aspects of Topology and Analysis, Springer, LNM 915 (1982) 216-233] it is shown that every geometric morphism φ admits a unique factorization $\varphi \cong \psi \cdot \pi$ where ψ is entire and π is pure.

Suppose now that there is a base topos \mathcal{S} over which the toposes are defined and that we only consider geometric morphisms "over \mathcal{S} ". Also suppose that instead of 2=1+1 in the above, we take the object $\Omega_{\mathcal{S}}$ of truth-values in the topos \mathcal{S} . The question that we answer here is the following: under what conditions on $\varphi \colon \mathcal{F} \to \mathcal{E}$ (over \mathcal{S}) does one obtain a relativized version of the pure-entire factorization mentioned above. In the process of answering it in [M. Bunge, J. Funk, M. Jibladze, T. Streicher, *Relative Stone Locales*, in preparation], we encounter several interesting versions of well-known notions, constructive versions of classically known results, and new problems.