Span refinements of the Cech Nerve Eduardo J. Dubuc

A 2-span is a commutative diagram of the form

Given a cover (epimorphism) $U \longrightarrow 1$ in a topos $\mathcal{E} \xrightarrow{\gamma} \mathcal{S}et$, it determines a simplicial object $U_{\bullet}, U_n = U \times U \times \ldots U n + 1$ times. A hypercover X_{\bullet} is a simplicial object together with a morphism $X_{\bullet} \longrightarrow U_{\bullet}$. If the topos is locally connected simplicial objects have a canonical indexing simplicial set $\gamma!(X_{\bullet}), X_{\bullet} \longrightarrow \gamma^* \gamma!(X_{\bullet})$. For non locally connected topoi the indexing has to be given explicitly as part of the datum. This leads to the notion of simplicial family, $X_{\bullet} \longrightarrow \gamma^*(S_{\bullet})$ (where S_{\bullet} is a simplicial set) and of indexed hypercover. We discover that the *n*-simplexes of a simplicial family furnish a notion of *n*-spans which is intimately related to the coeskeleton functor. We develop this theory and an application to the fundamental progroupoid of a non locally connected topos. In this talk we will not assume familiarity with hypercovers or the coeskeleton functor.