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What is strong conceptual completeness for
first-order logic?

§ A strong conceptual completeness statement for a
logical doctrine is an assertion that a theory in this
logical doctrine can be recovered from an appropriate
structure formed by the models of the theory.

§ Makkai proved such a theorem for first-order logic
showing one could reconstruct a first-order theory T
from ModpT q equipped with structure induced by
taking ultraproducts.

§ Before we dive in, let’s look at a well-known theorem
from model theory, with the same flavor, which
Makkai’s result generalizes: the Beth definability
theorem.
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The Beth theorem

Theorem.
Let L0 Ď L1 be an inclusion of languages with no new sorts.
Let T1 be an L1-theory. Let F : ModpT1q ÑModpHL0

q be
the reduct functor. Suppose you know any of the following:

1. There is a L0-theory T0 and a factorization:

ModpT1q ModpHL0
q

ModpT0q

F

»

2. F is full and faithful.
3. F is injective on objects.
4. F is full and faithful on automorphism groups.

5. F is full and faithful on HomL1
pM,MU q for all

M PModpT1q and all ultrafilters U .

6. Every L0-elementary map is an L1-homomorphism of
structures.

Then: (*) Every L1-formula is T1-provably equivalent to an
L0-formula.
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Useful consequence of Beth’s theorem

Corollary.

Let T be an L-theory, let S be a finite product of sorts. Let
X : ModpT q Ñ Set be a subfunctor of M ÞÑ SpMq.

Then: if X commutes with ultraproducts on the nose
(”satisfies a  Los’ theorem”), then X was definable, i.e. X is
an evaluation functor for some definable set ϕ P DefpT q.

Proof.

(Sketch): expand each model M of T by a new sort X pMq.
Use commutation with ultraproducts to verify this is an
elementary class. Then we are in the situation of 1 ùñ p˚q

from Beth’s theorem.
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How does strong conceptual completeness enter
this picture?

§ Plain old conceptual completeness (this was one of the
key results of Makkai-Reyes) says that if an
interpretation I : T1 Ñ T2 induces an equivalence of

categories ModpT1q
I˚
»ModpT2q, then I must have

been a bi-interpretation.
So, it proves 1 ùñ p˚q, and therefore the corollary.

§ Strong conceptual completeness is the following
upgrade of the corollary.
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Strong conceptual completeness, I

Theorem.

Let T be an L-theory. Let X be any functor
ModpT q Ñ Set. Suppose that you have:

§ for every ultraproduct
ś

iÑU Mi a way to identify

X p
ś

iÑU Mi q
ΦpMi q

»
ś

iÑU X pMi q (”there exists a
transition isomorphism”), such that

§ pX ,Φq preserves ultraproducts of models/elementary
embeddings (”is a pre-ultrafunctor”), and also

§ preserves all canonical maps between ultraproducts
(”preserves ultramorphisms”).

Then: there exists a ϕpxq P T eq such that X » evϕpxq as
functors ModpT q Ñ Set. (We call such X an ultrafunctor.)
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Strong conceptual completeness, I

§ That is, the specified transition isomorphisms
ΦpMi q

: X p
ś

iÑU Mi q Ñ
ś

iÑU X pMi q make all
diagrams of the form

X p
ś

iÑU Mi q
ś

iÑU X pMi q

X p
ś

iÑU Ni q
ś

iÑU X pNi q

Xp
ś

iÑU fiq

ΦpMi q

ś

iÑU X pfi q

ΦpNi q

commute (“transition isomorphism/pre-ultrafunctor
condition”).
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Strong conceptual completeness, I

What are ultramorphisms?
An ultragraph Γ comprises:

§ A directed graph whose vertices are partitioned into free
nodes Γf and bound nodes Γb.

§ For any bound node β P Γb, we assign a triple

xI ,U , gy df
“ xIβ,Uβ, gβy where U is an ultrafilter on I

and g is a function g : I Ñ Γf .

§ An ultradiagram for Γ is a diagram of shape Γ which
incorporates the extra data: bound nodes are the
ultraproducts of the free nodes given by the functions g .

§ A morphism of ultradiagrams (for fixed Γ) is just a
natural transformation of functors which respects the
extra data: the component of the transformation at a
bound node is the ultraproduct of the components for
the indexing free nodes.
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Strong conceptual completeness, I

Okay, but what are ultramorphisms?

Definition.

Let HompΓ,Sq be the category of all ultradiagrams of type Γ
inside S with morphisms the ultradiagram morphisms defined
above. Any two nodes k, ` P Γ define evaluation functors
pkq, p`q : HompΓ,Sq Ñ S, by

pkq
´

A
Φ
Ñ B

¯

“ Apkq
Φk
Ñ Bpkq

(resp. `).
An ultramorphism of type xΓ, k , `y in S is a natural
transformation δ : pkq Ñ p`q.

It’s sufficient to consider the ultramorphisms which come
from universal properties of colimits of products in Set.
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Strong conceptual completeness, II

Now, what’s changed between this statement and that of
the useful corollary to Beth’s theorem?

§ We dropped the subfunctor assumption! We don’t have
such a nice way of knowing exactly how X pMq is
obtained from M. We only have the invariance under
ultra-stuff. We’ve left the placental warmth of the
ambient models and we’re considering some kind of
abstract permutation representation of ModpT q.

§ Yet, if X respects enough of the structure induced by
the ultra-stuff, then X must have been constructible
from our models in some first-order way (”is definable”).

§ (With this new language, the corollary becomes: ”strict
sub-pre-ultrafunctors of definable functors are
definable.”)
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Strong conceptual completeness, III

Actually, Makkai proved something more, by doing the
following:

§ Introduce the notions of ultracategory and ultrafunctors
by requiring all this extra ultra-stuff to be preserved.

§ Develop a general duality theory between pretoposes
(“DefpT q”) and ultracategories (“ModpT q”) via a
contravariant 2-adjunction (“generalized Stone
duality”).

§ In particular, from this adjunction we get
PretoppT1,T2q » UltpModpT2q,ModpT1qq.

Therefore, SCC tells us how to recognize a reduct functor in
the wild between two categories of models—i.e., if there is
some uniformity underlying a functor ModpT2q ÑModpT1q

due to a purely syntactic assignment T1 Ñ T2. Just check if
the ultra-structure is preserved!
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Caveat. Of course, one has an infinite list of conditions to
verify here.

§ So the only way to actually do this is to recognize some
kind of uniformity in the putative reduct functor which
lets you take care of all the ultramorphisms at once.

§ But it gives you another way to think about uniformities
you need.

§ It also gives you a way to check that something can
never arise from any interpretation!
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Important examples of ultramorphisms

Examples.

§ The diagonal embedding into an ultrapower.

§ Generalized diagonal embeddings. More generally, let
f : I Ñ J be a function, let U be an ultrafilter on I and
let V be the pushforward ultrafilter on J. Then for any
I -indexed sequence of structures pMi qiPI , there is a
canonical map δf :

ś

jÑV Mf piq Ñ
ś

iÑU Mi given by
taking the diagonal embedding along each fiber of f .
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∆-functors induce continuous maps on
automorphism groups

§ Why should we expect ultramorphisms to help us
identify evaluation functors in the wild?

§ Here’s an result which might indicate that knowing that
they’re preserved tells us something nontrivial.

Definition.

Say that X : ModpT q ÑModpT 1q is a ∆-functor if it
preserves ultraproducts and diagonal maps into ultrapowers.

Equip automorphism groups with the topology of pointwise
convergence.

Theorem.

If X is a ∆-functor from ModpT q to ModpT 1q, then X
restricts to a continuous map AutpMq Ñ AutpX pMqq for
every M PModpT q.
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Proof.

§ The topology of pointwise convergence is sequential, so
to check continuity it suffices to check convergent
sequences of automorphisms are preserved.

§ If fi Ñ f in AutpMq, then since the cofinite filter is
contained in any ultrafilter,

ś

iÑU fi agrees with
ś

iÑU f over the diagonal copy of M in MU . That is,
p
ś

iÑU fi q ˝∆M “ p
ś

iÑU f q ˝∆M .

§ Applying X and using that X is a ∆-functor, conclude
that

ś

iÑU X pfi q agrees with
ś

iÑU X pf q over the
diagonal copy of X pMq inside X pMqU .

§ For any point a P X pMq, the above says the sequence
pX pfi qpaqqiPI “U pX pf qpaqqiPI .

§ Since U was arbitrary and the cofinite filter on I is the
intersection of all non-principal ultrafilters on I , we
conclude that the above equation holds cofinitely.
Hence, X pfi q Ñ X pf q.
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ℵ0-categorical theories

§ A first-order theory T is ℵ0-categorical if it has one
countable model up to isomorphism.

§ ℵ0-categorical theories have only finitely many types in
each sort. (Caveat: when I say “type”, I mean an atom
in E pT q.)

§ A theorem of Coquand, Ahlbrandt and Ziegler says
that, given two ℵ0-categorical theories T and T 1 with
countable models M and M 1, a topological isomorphism
AutpMq » AutpM 1q induces a bi-interpretation M » M 1.

§ Since we know ∆-functors induce continuous maps on
automorphism groups, they’re a good candidate for
definable functors.

§ Boolean coherent toposes split into a finite coproduct of
E pTi q, where each Ti is ℵ0-categorical.
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A definability criterion for ℵ0-categorical theories

Theorem.

Let X : ModpT q Ñ Set. If T is ℵ0-categorical, the
following are equivalent:

1. For some transition isomorphism, pX ,Φq is a ∆-functor
(preserves ultraproducts and diagonal maps).

2. For some transition isomorphism, pX ,Φq is definable.
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A definability criterion for ℵ0-categorical theories

Proof.

(Sketch.)

§ One direction is immediate by SCC: definable functors
are ultrafunctors are at least ∆-functors.

§ Let M be the countable model. Use the lemma about
∆-functors pX ,Φq inducing continuous maps on the
automorphism groups (equivalently, pX ,Φq has the
finite support property) to cover each AutpMq-orbit of
X pMq by a projection from an AutpMq-orbit of M. By
ω-categoricity, the kernel relation of this projection is
definable, so we know that X pMq looks like an (a priori,
possibly infinite) disjoint union of types.

§ By AutpMqU orbit-counting, there are actually only
finitely many types.

§ Invoke the Keisler-Shelah theorem to transfer to all
N |ù T .
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A definability criterion for ℵ0-categorical theories

Corollary.

Let T and T 1 be ℵ0-categorical. Let X be an equivalence of
categories

ModpT1q
X
»ModpT2q.

Then X was induced by a bi-interpretation T1 » T2 if and
only if X was a ∆-functor.

In particular, Bodirsky, Evans, Kompatscher and Pinkser
gave an example of two ℵ0-categorical theories T ,T 1 with
abstractly isomorphic but not topologically isomorphic
automorphism groups of the countable model. This abstract
isomorphism induces an equivalence ModpT q »ModpT 1q

and since it can’t come from an interpretation, from the
corollary we conclude that it fails to preserve an ultraproduct
or a diagonal map was not preserved.
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Exotic pre-ultrafunctors

In light of the previous result, a natural question to ask is:

Question.

Is being a ∆-functor enough for SCC? That is, do
non-definable ∆-functors exist?

Theorem.

The previous definability criterion fails for general T . That
is:

§ There exists a theory T and a ∆-functor
pX ,Φq : ModpT q Ñ Set which is not definable.

§ There exists a theory T and a pre-ultrafunctor pX ,Φq
which is not a ∆-functor (hence, is also not definable.)
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Exotic pre-ultrafunctors

Proof.

(Sketch.)

§ Complete types won’t work, so take a complete type
and cut it in half into two partial types, one of which
refines the other. Define X pMq to be the realizations in
M of the coarser one.

§ Taking ultraproducts creates external realizations
(“infinite/infinitesimal points”) of either one.

§ You can either try to construct a transition isomorphism
which turns it into a pre-ultrafunctor (creating a non-∆
pre-ultrafunctor) or obtain one non-constructively
(creating a non-definable ∆-functor).
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Future work

§ Is the above X pMq isomorphic to evA for some
A P E pT q?

§ Which parts of Makkai’s ultra-data ensure
X : ModpT q Ñ Set is evA for A P E and which parts
make sure that A is compact?

§ How do ultramorphisms relate to the Awodey-Forssell
duality?

§ Conjecture: the pre-ultrafunctor part of the data
ensures compactness after you get inside the classifying
topos, i.e. if you start with A P E and evA is an
ultrafunctor, then A was compact.

§ Update: this last conjecture is actually true!
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Latest results:

Theorem.

Let E pT q be the classifying topos of a first-order theory. Let
B be an object of E pT q. The following are equivalent:

1. B is coherent.

2. evB : ModpT q Ñ Set is a pre-ultrafunctor.

3. The reduct functor ModpT rBsq
I˚
ÑModpT q is an

equivalence, where T rBs is T with an additional sort
for B and all the induced definable structure on B (“the
graph of E pT qpyp´q,Bq”) adjoined.

4. ModpE pT q{Bq is an ultracategory such that the
forgetful functor F : ModpE pT q{Bq ÑModpT q is an
ultrafunctor and the functor
pxM, by ÞÑ tbuq : ModpE pT q{Bq Ñ Set is a strict
ultrafunctor.
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Thank you!
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