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Abstract

We have been studying the limit completion, in the category of
commutative rings, of various subcategories of integral domains.
Since any limit of domains is a semiprime ring (only nilpotent is 0),
we will concentrate on the limit closure in that subcategory. This
will complement the talk Bob gave two weeks ago
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Some subcategories of domains

• Adom, the category of domains;

• Afld, the category of fields;

• Apfld, the category of perfect fields;

• Aic, the category of integrally closed domains;

• Abez, the category of Bézout domains;

• Aica, the category of absolutely integrally closed domains;

• Aicp, the category of perfect integrally closed domains;

• Aper, the category of perfect domains;

• Aqrat, the category of quasi-rational domains;

• Anoe, the category of Noetherian domains;

• Aufd, the category of unique factorization domains.
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Relations among the subcategories

Adom

Aic

Aicp= Aic ∩ Aper

Aica

Afld

Aufd

Afld ∩ Aper = Apfld = Afld ∩ Aicp

Aqrat AperAbez

lllllllllllllllll

lllllll yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

lllllllllllllllllllllllllllll

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

:::::::::::::

lllllll

�����������

,,,,,,,,,,,

4 / 14



Relations among their limit closures.

Kdom

Kbez = Kic

Kica =Kicp 6= Kic ∩KperKfld

Kufd

Kfld ∩Kper = Kpfld = Kfld ∩Kicp

Kqrat Kper

iiiiiiiiiiiiiiiiiiiiii
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Basic assumptions

• A is a category of domains (such as one of the above).

• K is the limit closure of A in commutative rings.

• Every domain can embedded into a field that belongs to A .
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Construction of K and G

K : SPR //K is the adjoint to the inclusion of K into the
category of semiprime rings, easily shown to exist.
G is more interesting. Let B ⊆ K consist of all domains in K . In
most cases it is larger than A .
Example: Define D as the pullback Z[x ]×Z2[x] Z2[x2]. Then
D ∈ Bic but is not integrally closed since x /∈ D satisfies the
integral equation t2 − x2 with coefficients in D.
For a domain D we let G (D) denote the intersection of all objects
of B that contain D. There is at least one since there is a field in
A that contains D.
• Suppose D ⊆ F ∈ A with F a field. Then G (D) is the
intersection of all B-subobjects of F that contain D.
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Some properties of G and K

• G (D) is a subring of the perfect closure of the field of
fractions of D.

• The inner adjunction R // K (R) is an injection.

• The inner adjunction R // K (R) is epic in semiprime rings.

• The induced Spec(K (R)) // Spec(R) is a bijection.
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Theorem, FAE (all D,R,P):

1. G (D) = K (D).

2. P ⊆ D, there is a map G (D) // G (D/P).

3. The map Spec(G (D)) // Spec(D) is surjective.

4. G is a functor on domains.

5. K (D) is a domain.

6. ker(K (R) // K (R/P)) is prime.

7. Spec(K (R)) // Spec(R) is an order isomorphism.

8. R // K (R) is essential.

9. R ⊆ S ⊆ K (R) implies K (S) = K (R).

10. R ⊆ S ⊆ K (R) implies R �
� // S is epic.

11. R �
� // K (R) is integral.

12. D � � // G (D) is integral.

13. Aica ⊆ K .

14. Aicp ⊆ K .
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Diagram of logical inferences

4.G functor

3. Spec surj on G

12.G (D) integral

13.Aica ⊆ K

14.Aicp ⊆ K

1.G = K

2.G (D) to G (D/P)

11.K (R) integral

9.K on intermed

10. epic on intermed

5. dom inv

6. kernel prime

7.Spec order iso

8.K (R) essential

+3 +3
KS

��
ks

��

KS

��
ks

KS

��

KS

��
ks

KS

��

KS

��
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Sample results

• A semiprime ring satisfies the (2,3)-condition if whenever
r3 = s2, there is a t (provably unique) such that t2 = r and
t3 = s. To prove uniqueness, compute (t − u)3.

• It is interesting, although not important, to note that the
(2,3)-condition is equivalent to the (k,n)-condition whenever
k > 1 and n > 1 are relatively prime integers.

• Every integrally closed domain D satisfies that condition. The
element t = s/r of the field of fractions solves it and is
integral over D.

• Theorem: A semiprime ring is in Kic iff it is (2,3)-closed.
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Sample results, continued

• A semiprime ring satisfies the DL-condition if whenever
r3 = s2 and r is a square mod every prime ideal, then there is
a t (provably unique) such that t2 = r and t3 = s.

• Using the compactness of Spec in the domain topology, you
can prove that the condition of being a square mod every
prime is equivalent to the existence of a set {t1, . . . , tn} such
that (r − t21 ) · · · (r − t2n) = 0.

• Every domain trivially satisfies the DL-condition.

• Theorem: A semiprime ring is in Kdom iff it satisfies the
DL-condition.

12 / 14



Sample results, continued

• A semiprime ring satisfies the DL-condition if whenever
r3 = s2 and r is a square mod every prime ideal, then there is
a t (provably unique) such that t2 = r and t3 = s.

• Using the compactness of Spec in the domain topology, you
can prove that the condition of being a square mod every
prime is equivalent to the existence of a set {t1, . . . , tn} such
that (r − t21 ) · · · (r − t2n) = 0.

• Every domain trivially satisfies the DL-condition.

• Theorem: A semiprime ring is in Kdom iff it satisfies the
DL-condition.

12 / 14



Sample results, continued

• A semiprime ring satisfies the DL-condition if whenever
r3 = s2 and r is a square mod every prime ideal, then there is
a t (provably unique) such that t2 = r and t3 = s.

• Using the compactness of Spec in the domain topology, you
can prove that the condition of being a square mod every
prime is equivalent to the existence of a set {t1, . . . , tn} such
that (r − t21 ) · · · (r − t2n) = 0.

• Every domain trivially satisfies the DL-condition.

• Theorem: A semiprime ring is in Kdom iff it satisfies the
DL-condition.

12 / 14



Sample results, continued

• A semiprime ring satisfies the DL-condition if whenever
r3 = s2 and r is a square mod every prime ideal, then there is
a t (provably unique) such that t2 = r and t3 = s.

• Using the compactness of Spec in the domain topology, you
can prove that the condition of being a square mod every
prime is equivalent to the existence of a set {t1, . . . , tn} such
that (r − t21 ) · · · (r − t2n) = 0.

• Every domain trivially satisfies the DL-condition.

• Theorem: A semiprime ring is in Kdom iff it satisfies the
DL-condition.

12 / 14



These conditions are essentially algebraic

• Aside from the operations defining commutative rings, we let
α be the unary partial operation whose domain consists of
{r | r2 = 0}, subject to the equations α(r) = r and α(r) = 0.
The algebras for this theory is just the semiprime rings.

• Add a binary operator β whose domain is {(r , s) | r3 = s2}
and subject to the equations β(r , s)2 = r and β(r , s)3 = s.
The algebras for this theory are the (2,3)-closed rings.
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These are essentially algebraic, cont’d

• Aside from the operations and the partial operation defining
the semiprime rings, we add, for each n > 0, a partial
(n + 2)-ary operation βn whose domain is

{(r , s, t1, . . . , tn) | r3 = s2 and (r − t21 ) · · · (r − t2n) = 0}

subject to the equations that, for t = βn(r , s, t1, . . . , tn), then
t2 = r and t3 = s.

• In all cases the values of the partial operations are unique,
subject to the equations, and therefore the subcategory of
models is full in the category of commutative rings.
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