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Abstract

We have been studying the limit completion, in the category of
commutative rings, of various subcategories of integral domains.
Since any limit of domains is a semiprime ring (only nilpotent is 0),
we will concentrate on the limit closure in that subcategory. This
will complement the talk Bob gave two weeks ago
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Some subcategories of domains

Adjom, the category of domains;

Anq, the category of fields;

Aona, the category of perfect fields;

A, the category of integrally closed domains;

Aoy, the category of Bézout domains;

Ay, the category of absolutely integrally closed domains;
Ay, the category of perfect integrally closed domains;
Aper, the category of perfect domains;

Aqrat, the category of quasi-rational domains;

Aoe, the category of Noetherian domains;

Autq, the category of unique factorization domains.
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Relations among the subcategories
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Relations among their limit closures.
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Basic assumptions

e 4 is a category of domains (such as one of the above).
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Basic assumptions

e 4 is a category of domains (such as one of the above).
e X is the limit closure of 4 in commutative rings.

e Every domain can embedded into a field that belongs to 4.
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Construction of K and G

K : SPR.— XK is the adjoint to the inclusion of X into the
category of semiprime rings, easily shown to exist.

G is more interesting. Let B C K consist of all domains in X. In
most cases it is larger than 4.

Example: Define D as the pullback Z[x] xz,[,j Z2[x?]. Then

D € B, but is not integrally closed since x ¢ D satisfies the
integral equation t? — x? with coefficients in D.

For a domain D we let G(D) denote the intersection of all objects
of B that contain D. There is at least one since there is a field in
A that contains D.

e Suppose D C F € 4 with F a field. Then G(D) is the
intersection of all B-subobjects of F that contain D.
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Some properties of G and K

G(D) is a subring of the perfect closure of the field of
fractions of D.

The inner adjunction R — K(R) is an injection.
The inner adjunction R — K(R) is epic in semiprime rings.
The induced Spec(K(R)) — Spec(R) is a bijection.
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Theorem, FAE (all D,R,P):
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Theorem, FAE (all D,R,P):

G(D) = K(D).

P C D, there is a map G(D)— G(D/P).

The map Spec(G (D)) — Spec(D) is surjective.
G is a functor on domains.

K(D) is a domain.

ker(K(R) — K(R/P)) is prime.

Spec(K(R)) — Spec(R) is an order isomorphism.

R — K(R) is essential.
R C S C K(R) implies K(S) = K(R).
R C S C K(R) implies R < S is epic.

. R = K(R) is integral.
. D < G(D) is integral.
- Aica © K.
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Theorem, FAE (all D,R,P):

G(D) = K(D).

P C D, there is a map G(D)— G(D/P).

The map Spec(G (D)) — Spec(D) is surjective.
G is a functor on domains.

K(D) is a domain.

ker(K(R) — K(R/P)) is prime.

Spec(K(R)) — Spec(R) is an order isomorphism.

R — K(R) is essential.
R C S C K(R) implies K(S) = K(R).
R C S C K(R) implies R < S is epic.

. R = K(R) is integral.
. D < G(D) is integral.
- Aica © K.
- Aiep € K.
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Diagram of logical inferences

4. G functof =—=1.G = K =————=5.dom inv

1 J !

3.Spec surjon G <=2.G(D) to G(D/P) 6. kernel prime
12. G(D) integral <= 11. K(R) integral 7.Spec order iso
13. 2. € K 9. K on intermed <—— 8. K(R) essential

!

14. 4, € K 10. epic on intermed
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Sample results

¢ A semiprime ring satisfies the (2,3)-condition if whenever
r® = 52, there is a t (provably unique) such that t?> = r and

t3 = s. To prove uniqueness, compute (t — u)3.
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Sample results

A semiprime ring satisfies the (2,3)-condition if whenever

r® = 52, there is a t (provably unique) such that t?> = r and
t3 = s. To prove uniqueness, compute (t — u)3.

It is interesting, although not important, to note that the
(2,3)-condition is equivalent to the (k,n)-condition whenever

k > 1 and n > 1 are relatively prime integers.

Every integrally closed domain D satisfies that condition. The
element t = s/r of the field of fractions solves it and is
integral over D.

Theorem: A semiprime ring is in K. iff it is (2,3)-closed.
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Sample results, continued

e A semiprime ring satisfies the DL-condition if whenever

r3 = s? and r is a square mod every prime ideal, then there is

a t (provably unique) such that t?> = r and t3 = s.
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Sample results, continued

A semiprime ring satisfies the DL-condition if whenever
r3 = s? and r is a square mod every prime ideal, then there is

a t (provably unique) such that t?> = r and t3 = s.

Using the compactness of Spec in the domain topology, you
can prove that the condition of being a square mod every
prime is equivalent to the existence of a set {t1,...,t,} such
that (r — t2)---(r — t2) = 0.

Every domain trivially satisfies the DL-condition.

Theorem: A semiprime ring is in Kgom Iff it satisfies the
DL-condition.
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These conditions are essentially algebraic

e Aside from the operations defining commutative rings, we let
« be the unary partial operation whose domain consists of
{r| r?> = 0}, subject to the equations a(r) = r and a(r) = 0.
The algebras for this theory is just the semiprime rings.
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e Aside from the operations defining commutative rings, we let
« be the unary partial operation whose domain consists of
{r| r?> = 0}, subject to the equations a(r) = r and a(r) = 0.
The algebras for this theory is just the semiprime rings.

e Add a binary operator 3 whose domain is {(r,s) | r* = s%}
and subject to the equations 3(r,s)? = r and B(r,s)3 = s.
The algebras for this theory are the (2,3)-closed rings.
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These are essentially algebraic, cont'd

e Aside from the operations and the partial operation defining
the semiprime rings, we add, for each n > 0, a partial
(n + 2)-ary operation /3, whose domain is

{(r,s,tr,....tn) | P =s%and (r— £2)--- (r — t2) = 0}

subject to the equations that, for t = 3,(r,s, t1,...,ts), then
t2?=rand t3 =s.
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e Aside from the operations and the partial operation defining
the semiprime rings, we add, for each n > 0, a partial
(n + 2)-ary operation /3, whose domain is

{(r,s,tr,....tn) | P =s%and (r— £2)--- (r — t2) = 0}

subject to the equations that, for t = 3,(r,s, t1,...,ts), then
t2?=rand t3 =s.

e In all cases the values of the partial operations are unique,
subject to the equations, and therefore the subcategory of
models is full in the category of commutative rings.
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