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Talk 1: Limit closures of some full subcategories

Abstract: John Kennison, Bob Raphael, and I have recently been
working on the question of the limit closure of a full subcategory of
a complete category inside that larger category. I will report on the
results of these investigations in three cases:

1. The subcategory of metric spaces and uniformly continuous
maps inside the category of separated uniform spaces.

2. The subcategory of integrally closed domains inside the
category of commutative rings.

3. The subcategory of all integral domains inside the category of
commutative rings.
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Limit closure

For our purposes, assume all subcategories full. A is a subcategory
of the complete category C . At least two definitions of limit
closure are possible. Fortunately, they coincide.

1. K1 =
⋂
{B | A ⊆ B and B is limit closed in C}

2. K2 =
⋃

Bα taken over all ordinals α, where:

Bα =


∏

A if α = 0∏⋃
β<α Bβ if α is a limit ordinal

EqBβ if α = β + 1

Note, in connection with K2, that all the Bn, for finite n, are
product closed while

⋃
Bn is equalizer closed, but may have only

finite products. All the Bα, for ω ≤ α < Ω, are product closed,
while

⋃
α<Ω is equalizer closed, but may have only countable

products, and so on.
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K1 = K2

If B ⊆ K1, then both
∏

B and EqB are still contained in K1, so
K2 ⊆ K1. On the other hand K2 is a limit closed subcategory
containing A , so K1 ⊆ K2.
We denote either limit closure by K .
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1. Uniform spaces

Three definitions of uniform spaces, which we will always assume
to be separated.

1. By entourages: subsets of the square containing the diagonal,
subject to standard hypotheses. E.g., in a metric space, the ε
neighbourhoods of the diagonal.

2. By uniform covers, again subject to standard hypotheses. E.g.,
in a metric space, covers by ε neighbourhoods of the points.

3. By a family of pseudometrics, again subject to standard
hypotheses. E.g., in a metric space, the metric itself.
A pseudometric is just like a metric except that the distance
between distinct points may be 0. But to be separated
requires that the family collectively distinguishes points.
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Our first guess

Our first hypothesis was that every (separated) uniform space was
a limit of metric spaces. It is trivial that if you drop the separation
hypothesis, then every uniform space is a limit of pseudometric
spaces. So the interesting question is for separated uniform spaces.
Not surprisingly, the third definition, in terms of pseudometrics is
the most useful in answering this question.
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Complete and Cooper complete spaces

A net {xi} in a uniform space is a Cauchy net if for all
pseudometrics d and all ε > 0 there is an i such that j , k ≥ i
implies d(xj , xk) < ε. The space is complete if every Cauchy net
converges.
The net is strongly Cauchy if for all pseudometrics d there is an i
such that j ≥ i implies d(xi , xj) = 0 (which implies that for all
j , k ≥ i , d(xj , xk) = 0). We call the space Cooper complete if
every strongly Cauchy net converges.
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The theorem

Evidently, every metric space is Cooper complete. Since the
condition is easily seen to be preserved under limit, it follows that
every limit of metric spaces is Cooper complete. Therefore the
following theorem is not surprising:
Theorem: The limit completion of metric spaces is the subcategory
of Cooper complete spaces.
The proof, while not hard, requires more development than I have
time for. If there is time at the end, I will sketch it.
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Not every uniform space is Cooper complete

I will sketch this example, due to Cooper. The space is the set Ω
of all countable ordinals with the uniformity inherited from Ω + 1,
the compact space of ordinals up to and including Ω. The net is
the space itself, with xα = α, which clearly lacks a limit. On the
other hand, every pseudometric extends to Ω + 1 since R is
complete. But standard theorems of analysis imply that every
real-valued function on Ω + 1 is eventually constant, whence the
strong Cauchy condition is satisfied.
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2. Integrally closed domains

An integral domain D is called integrally closed if every integral
polynomial a0 + a1x + . . . an−1x

n−1 + xn that has a root in its field
F of fractions already has a root in D. This is a bit of contre sens
but it is a long-used definition in ring theory.
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(2,3)-closed

We begin with: A commutative ring is called semiprime if it has
no non-zero nilpotents. Clearly any limit of domains is semiprime
and we can thus limit the ambient category to the category of
semiprime rings.
Next we note that if b3 = c2 6= 0 is an element of D, then the
element a = c/b ∈ F is readily seen to be a root to the integral
equations x2 − b = 0 and x3 − c = 0. The case that b3 = c2 = 0
trivially has a root.
This leads to the definition: We say that a commutative
semi-prime ring R is (2,3)-closed if whenever b3 = c2 ∈ R, then
there is a (provably unique) a ∈ R such that a2 = b and a3 = c .
Thus integrally closed domains are (2,3)-closed
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Uniqueness

The uniqueness follows easily from showing that if a1, a2 are two
solutions then (a1 − a2)3 = 0.
Although we make no use of the fact, using the obvious definition
of (k , `)-closed, one can show that a semi-prime ring is
(2,3)-closed if and only if it is (k , `)-closed for some pair of
relatively prime positive integers k , `.
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The main theorem

Theorem. A semi-prime ring is in the limit closure of integrally
closed domains if and only if it is (2,3)-closed.
The “if” part of the proof is a long, rather involved argument that
uses, for each ring R, a sheaf on Spec(R) whose stalk above the
prime ideal P is the meet of all (2,3)-closed domains containing
R/P.
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The “only if” part

An integrally closed domain is (2,3)-closed.
The conclusion then follows by using the transfinite inductive
definition of the limit closure and then using the fact that there is
an essentially algebraic theory whose models are the (2,3)-closed
rings.
Start with the algebraic theory of commutative rings and add two
partial operations. The first is a unary partial operation σ whose
domain is {x | x2 = 0} and satisfies the equations σ(x) = x and
σ(x) = 0. This characterizes commutative semi-prime rings.
The second, τ , has the domain {(x , y) | x3 = y2} and satisfies the
equations τ(x , y)2 = x and τ(x , y)3 = y . This clearly characterizes
(2,3)-closure.
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A (2,3)-closed domain that is not integrally closed.

Let Z[i , t] denote the ring of polynomials over the Gaussian
integers. It is a UFD and therefore integrally closed. Let
R ⊆ Z[i , t] denote the subring consisting of the polynomials whose
constant term is real. Then

Z Z[i ]//

R

Z
��

R Z[i , t]// Z[i , t]

Z[i ]
��

is a pullback so that R is (2,3)-closed. But the element i = it/t in
the field of fractions of R is obviously integral and does not belong
to R.
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3. Domains

Next I want to describe briefly the case that A consists of all
domains. The main definition we need is:
The commutative semiprime ring R is DL-closed if, whenever
b, c ∈ R are such that b3 = c2 and also b is a square mod every
prime ideal, then there is a (unique) a ∈ R such that a2 = b and
a3 = c . Clearly every domain is DL-closed since 0 is a prime ideal.
Theorem. A ring is in the limit closure of domains if and only if it
is DL-closed.
Again the “if” is rather complicated and we omit saying anything
about it.
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The domain topology

For the “only if” part, we again show, somewhat surprisingly, that
DL-closure can also be described by an essentially algebraic theory.
We briefly explore this.
The domain (sometimes called co-Zariski) topology on Spec(R)
takes as a subbase all sets N(r) = {P | r ∈ P} for r ∈ R. It is a
result of Hochster that this space is also compact. In fact,
Hochster showed that the topology that takes all these sets and
their complements as a subbase is even compact and Hausdorff.
Proposition. If b ∈ R is a square mod every prime ideal, then there
are finitely many a1, a2, . . . , an such that
(b − a2

1)(b − a2
2) · · · (b − a2

n) = 0.
The proof uses the fact that for each prime ideal P, there is an
element aP ∈ R such that b − a2

P ∈ P and therefore the sets
N(b − a2

P) cover Spec(R), whence a finite number do.
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DL-closed is an essentially equational condition

At first glance, it doesn’t even appear to be first order. But armed
with the above result, we let, for each n > 0, an (n + 2)-ary
operation τn whose domain is

{x1, x2, . . . , xn, y , z | (y − x2
1 )(y − x2

2 ) · · · (y − x2
n ) = y3 − z2 = 0}

This is subject to the conditions τn(x1, . . . , xn, y , z)2 = y and
τn(x1, . . . , xn, y , z)3 = z . The equations defining commutative
rings, the set of all these τn, together with the σ defined above to
force semiprimeness are a near equational description of DL-closed
rings.
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Sketch of the proof for uniform spaces

If X is a uniform space and d a pseudometric, let Ed be the
equivalence relation defined by xEdy when d(x , y) = 0. Then
Xd = X/Ed is a metric space and the quotient map is uniform. If
X is separated, this embeds it into embeds Y =

∏
d Xd . If this

embedding is closed, then it can be shown, perhaps surprisingly,
that the space Y /X gotten by shrinking X to a point is still a
separated uniform space and can therefore be embedded into a
product of metric spaces, rendering X as an equalizer of two maps
between two maps of products of metric spaces. Of course, such
an equalizer is always closed.
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The converse implication

It therefore suffices to show that when X is Cooper complete, then
the embedding X // Y is always closed.
Since the sup of two pseudometrics is a pseudometric, we can and
will assume that the set of pseudometrics is directed by numerical
order. Let qd : X // Xd be the quotient mapping, pd : Y // Xd

be the product projection. When d ≤ e, there is also a quotient
mapping qde : Xe

// Xd such that qdeqe = qd . Since pd |X = qd
and pe |X = qe , we also have that d ≤ e implies that
qdepe |X = pd |X which, since all the spaces are separated, implies
that qdepe |cl(X ) = pd |cl(X ).
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The converse, continued

To repeat, qdepe |cl(X ) = pd |cl(X ).
Suppose y ∈ cl(X ). Since every qd is surjective, we have, for each
d an element xd ∈ X such that qd(xd) = pd(y). For d ≤ e, we
have

qd(xe) = qdeqe(xe) = qdepe(y) = pd(y) = qd(xd)

which is possible if and only if d(xd , xe) = 0. Since this is true
whenever d ≤ e, it follows that the net of xd is strongly Cauchy
and hence converges in X . Since it also converges to y and the
spaces are separated, it follows that y ∈ X and so X is closed in Y .
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Some other results

In all three cases below, A is a subcategory of uniform spaces
consisting of a single object and its endomorphisms.

1. If the object is the two point discrete space, C consists of the
totally disconnected compact Hausdorff spaces with their
unique uniformity.

2. If the object is the unit interval, C consists of all compact
Hausdorff spaces with their unique uniformity.

3. If the object is the real line with its usual metric, C consists of
all complete uniform spaces.
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Talk 2: Completions of subcategories of domains

Abstract: We have been studying the limit completion, in the
category of commutative rings, of various subcategories of integral
domains. Since any limit of domains is a semiprime ring (only
nilpotent is 0), we will concentrate on the limit closure in that
subcategory.
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Some subcategories of domains

• Adom, the category of domains;

• Afld, the category of fields;

• Apfld, the category of perfect fields;

• Aper, the category of perfect domains;

• Aic, the category of integrally closed domains;

• Aica, the category of absolutely integrally closed domains;

• Aicp, the category of perfect integrally closed domains;

• Aqrat, the category of quasi-rational domains;

• Anoe, the category of Noetherian domains;

• Abez, the category of Bézout domains;

• Aufd, the category of unique factorization domains.
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Relations among the subcategories

Adom

Aic

Aicp= Aic ∩ Aper

Aica

Afld

Aufd

Afld ∩ Aper = Apfld = Afld ∩ Aicp

Aqrat AperAbez

lllllllllllllllll
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Relations among their limit closures.

Kdom

Kbez = Kic

Kica =Kicp 6= Kic ∩KperKfld

Kufd

Kfld ∩Kper = Kpfld = Kfld ∩Kicp

Kqrat Kper

iiiiiiiiiiiiiiiiiiiiii
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Basic assumptions

• A is a category of domains (such as one of the above).

• K is the limit closure of A in commutative rings.

• Every domain can embedded into a field that belongs to A .
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Construction of K and G
K : SPR //K is the adjoint to the inclusion of K into the
category of semiprime rings, easily shown to exist.
G is more interesting. Let B ⊆ K consist of all domains in K . In
most cases it is larger than A .
Example: Let D be the pullback of three UFDs

Z2[t2] Z2[t]//

D

Z2[t2]
��

D Z[t]// Z[t]

Z2[t]
��

it consists of polynomials in t whose odd order terms are even.
D ∈ Bic but is not integrally closed since t = 2t/2 /∈ D satisfies
the integral equation x2 − t2 with coefficients in D.
For a domain D we let G (D) denote the intersection of all objects
of B that contain D. There is at least one since there is a field in
A that contains D.
• Suppose D ⊆ F ∈ A with F a field. Then G (D) is the
intersection of all B-subobjects of F that contain D.
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Some properties of G and K

• G (D) is a subring of the perfect closure of the field of
fractions of D.

• The inner adjunction R // K (R) is an injection.

• The inner adjunction R // K (R) is epic in semiprime rings.

• The induced Spec(K (R)) // Spec(R) is a bijection.

K is domain reflective if it takes domains to domains.
Kfld is not domain reflective.
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Theorem, FAE (all D,R,P):

1. K is domain reflective.

2. G (D) = K (D).

3. P ⊆ D, there is a natural map G (D) // G (D/P).

4. The map Spec(G (D)) // Spec(D) is surjective.

5. G is a functor on domains.

6. ker(K (R) // K (R/P)) is prime.

7. Spec(K (R)) // Spec(R) is an order isomorphism.

8. R // K (R) is essential.

9. R ⊆ S ⊆ K (R) implies K (S) = K (R).

10. R ⊆ S ⊆ K (R) implies R �
� // S is epic.

11. R �
� // K (R) is integral.

12. D � � // G (D) is integral.

13. Aica ⊆ K .

14. Aicp ⊆ K .
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Diagram of logical inferences

1. dom inv 2.G = K

3.G (D) to G (D/P) 4. Spec surj on G

5.G functor

12.G (D) integral

13.Aica ⊆ K

14.Aicp ⊆ K

11.K (R) integral

9.K on intermed

10. epic on intermed

6. kernel prime

7. Spec order iso

8.K (R) essential

ksks
KS

��
+3

��

KS

��
+3

KS

��

KS

��
+3

KS

��

KS

��
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Why is it important that K be domain invariant?

Or that G be a functor?
Or that G = K , etc.?
The basic reason is that then there is a sheaf ER on Spec(R)
whose stalk above the prime P is K (R/P) which lies in A . Under
mild additional conditions (perhaps always), it then follows that
K (R) = Γ(ER), which gives a handle on it. By the way, the global
sections of any sheaf can be described as an inverse limit of the
stalks.
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