MATH 251: Linear Algebra I Midterm Examination

Instructor: Dr. Ming Mei

1. [25 pts] Let V be the vector space of functions $f : \mathbf{R} \to \mathbf{R}$ with the usual addition and scalar multiplication. Test if the following subsets of V are subspaces. If yes, prove it; if no, give the reason.

a). The set of all odd functions: $W_1 = \{f(t) \mid f(-t) = -f(t)\};$

b). The set of all bounded functions with up and low bounds 2 and -2: $W_2 = \{f(t) \mid -2 \leq f(t) \leq 2\}.$

2. [25 pts] Let $S = \{u_1, u_2, u_3\}$, where $u_1 = (1, 2, 3), u_2 = (4, 5, 6)$ and $u_3 = (7, 8, 9)$. Find a basis and the dimension of the spanning space span S.

3. [25 pts] Let V be a 5-dimensional vector space, and U and W be a 1-dimensional and 4-dimensional subspaces of V, respectively. Show all possibilities of U + W.

4. [25 pts] Let v_1 , v_2 , v_3 and v_4 be linearly independent vectors in a vector space V. Show that $w_1 = v_1 + v_2 + v_3 + v_4$, $w_2 = v_2 + v_4$, $w_3 = v_1 - v_2 + v_4$ and $w_4 = 2v_1 + v_2 + 3v_3 + v_4$ are linearly independent.