Champlain College – St.-Lambert

MATH 201: Calculus I

Review for Final Examination

Instructors:

M. Mei

Questions

- 1. (24pts) Find the following limits if they exist. If they do not exist, briefly indicate why not and determine they go to $-\infty$, ∞ , or neither.
 - (a) $\lim_{x \to 2} \frac{x-2}{3x^2-12}$;
 - (b) $\lim_{x \to \infty} \frac{\sqrt{4x-3}}{2x+3}$;
 - (c) $\lim_{x \to 1} \left(\frac{1}{1-x} \frac{1}{x-x^2} \right);$
 - (d) $\lim_{x\to 3} \frac{|x-3|}{x-3}$;
- 2. (24pts) Find the derivative for each of the following functions.
 - (a) $f(x) = 2x^2 3\sqrt[3]{x} + \frac{1}{x^2}$;
 - (b) $f(x) = (x^3 + \pi)e^{-x}$;
 - (e) $f(x) = \frac{x^3 1}{x \ln x}$;
 - (f) $f(x) = e^{x^2}(x-1)$.
- 3. (6pts) Let $f(x) = \frac{x-2}{x^2-x-2}$. Find the value of x where this function is discontinuous. State the type of discontinuity as removable, jump or infinity.
- 5. (6pts) Find the equation of the tangent line to the graph $2x^2 xy 8 = 0$ at the point (2,0).
- 6. (6pts) Let

$$f(x) = \begin{cases} x^2 - 1, & x \le 0 \\ 2x - 1, & x > 0. \end{cases}$$

Figure 0.1: The graphs of $f(x) = \frac{x-1}{x^2-x}$

Short Answers

Q1. (a). $\lim_{x\to 2} \frac{x-2}{3x^2-12} = \frac{1}{12}$. (b). $\lim_{x\to \infty} \frac{\sqrt{4x-3}}{2x+3} = 0$. (c). $\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{1}{x-x^2}\right) = -1$. (d). $\lim_{x\to 3} \frac{|x-3|}{x-3}$ doesn't exist, because the left limit is -1 and the right limit is 1, they are not equal.

Q2. (a). $f'(x) = 4x - x^{-\frac{2}{3}} - \frac{2}{x^3}$. (b). $f'(x) = (3x^2 - x^3 - \pi)e^{-x}$. (e). $f'(x) = e^{x^2}(2x^2 - 2x + 1)$.

Q3. x = 2 is the removable-discontinuous point, and x = -1 is the infinity-discontinuous point.

 $y=x^{2}+1$ y=2

Q5. the equation of the tangent line at (2,0) is y = 4x - 8.

Q6. x = 0 is not differentiable, because it is a sharp point.

Q7. (a) $D = (-\infty, 0) \cup (0, 1) \cup (1, \infty)$. (b) No x-intercept, no y-intercept. (c). Vertical asymptote: x = 0 and the horizontal asymptote is y = 0. (d) f(x) is increasing in $(-\infty, 0)$, (0, 1) and $(1, \infty)$, respectively. No critical number, no local maximum, no local minimum. (e) f(x) is concave upward in $(0, 1) \cup (1, \infty)$ and concave downward in $(-\infty, 0)$, no inflection points. (f) No absolute maximum, nor absolute minimum. The graph of the function is shown in Figure 0.1.

Q8. (a). Let x be the number of iPods sold in one week. The price function (demand function) is $p(x) = 100 - \frac{2}{30}(x - 500) = \frac{400}{3} - \frac{2}{30}x$. (b). The revenue function is $R(x) = xp(x) = \frac{400}{3}x - \frac{2}{30}x^2$. When x = 1000, it has the maximum revenue income. (c). The profit function is $P(x) = R(x) - C(x) = \frac{250}{3}x - \frac{2}{30}x^2 - 2000$. When x = 625, it has the maximum profit.

- (a) Sketch the graph of the function;
- (b) Find what value of x is this function NOT differentiable? Why?
- 7. (14pt) Let $f(x) = \frac{x-1}{x^2-x}$.
 - (a) Domain;
 - (b) Intercepts;
 - (c) Asymptotes;
 - (d) Critical numbers, increasing/decreasing intervals, local maximum/minimum, if any;
 - (e) Concavity, inflection points, if any;
 - (f) Absolute maximum/minimum if any, and then use the above information to sketch the graph of f(x).
- 8. (14pts) Futureshop has been selling 500 iPods a week at \$100 each. A market survey indicates that for each \$20 rebate offered to the buyer, the number of sets sold will increase by 300 per week.
 - (a) Find the demand function;
 - (b) How large a rebate should Futureshop offer the buyers in order to maximize its revenue?
 - (c) If its weekly cost function is $C(x) = 2{,}000 + 50x$, how should the Futureshop set the size of the rebate in order to maximize its profit?