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Abstract. This paper focuses on the structural stability of interior subsonic steady-states to
the multi-dimensional Euler--Poisson system of hydrodynamic model for semiconductors with sonic
boundary. As we know, the doping profile plays a crucial role for the existence/nonexistence of
all types of subsonic/supersonic/transonic solutions for the multidimensional steady hydrodynamic
model of semiconductors with sonic boundary. So it is quite significant and important to further
investigate the structural stability of these physical solutions, when the doping profile is with small
perturbation. The main issue of this paper is to study the structural stability of the radial interior
subsonic steady-states, once the perturbations of doping profiles are small enough. Owing to the
boundary degeneracy, and the strong singularity of the subsonic steady-states at the sonic boundary,
it is full of challenges to derive the globally structural stability of interior subsonic solutions in
multidimensional case. The adopted approach is the local singularity analysis at the sonic boundaries,
with the help of the monotonicity argument.

Key words. structural stability, radial interior subsonic steady-states, hydrodynamic model for
semiconductors, sonic boundary
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1. Introduction. The hydrodynamic model for semiconductors, first introduced
by Bl{\e}tekj{\ae}r [8], is usually used to characterize the motion of the charged particles,
such as the electrons and holes in semiconductors devices [19, 25]. The governing
equations are following n-dimensional Euler-Poisson equations:\left\{       

\rho t +div(\rho u) = 0,

(\rho u)t +div(\rho u\otimes u) +\nabla p(\rho ) = \rho \nabla \Phi  - \rho u

\tau 
, (x, t)\in \BbbR n \times \BbbR +,

\Delta \Phi = \rho  - b(x).

(1.1)

Here the unknown functions \rho (x, t), u(x, t), and \Phi (x, t) represent the electron density,
the velocity, and the electrostatic potential, respectively. The known function p(\rho )
is the pressure-density relation. For isentropic flows, p(\rho ) = \kappa \rho \gamma with \kappa > 0 and
\gamma > 1, and for isothermal flows, p(\rho ) = T\rho with the constant temperature T > 0.
In the present paper, for simplicity but without loss of generality, we consider the
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7742 JIANING XU, MING MEI, AND SHINYA NISHIBATA

isothermal case, and take T = 1 without loss of generality, namely, p(\rho ) = \rho . The
function b(x) > 0 is the doping profile which stands for the density of impurities in
the semiconductor device. The constant \tau > 0 denotes the momentum relaxation
time.

In this paper, we consider the following stationary equations of (1.1) in an annulus
domain \scrA . Let the electric field E := \nabla \Phi , then we have corresponding stationary
equations of (1.1) as follows:\left\{       

div(\rho u) = 0,

(u \cdot \nabla )u+
\nabla \rho 

\rho 
=E  - u

\tau 
, x\in \scrA ,

divE = \rho  - b(x),

(1.2)

where the annulus domain \scrA is defined by

\scrA := \{ x\in \BbbR n | r0 < | x| < r1\} with fixed constants 0< r0 < r1,

the inner boundary and outer boundary of \scrA are denoted by \Gamma 0 and \Gamma 1, respectively,
namely,

\Gamma 0 := \{ x\in \BbbR n | | x| = r0\} and \Gamma 1 := \{ x\in \BbbR n | | x| = r1\} ,

and the closure of \scrA is denoted by \scrA := \Gamma 0 \cup \scrA \cup \Gamma 1.
From the terminology of fluid dynamics, we call c(\rho ) :=

\sqrt{} 
p\prime (\rho ) = 1 the local

sound speed and M := | u| 
c(\rho ) the Mach number. Thus, the stationary flow of (1.2) is

called to be subsonic if M < 1, supersonic if M > 1, and sonic if M = 1.
We assume b(x) := \~b(r) in \scrA with \~b(r) \in L\infty ((r0, r1)) and r = | x| . In the polar

coordinates, we denote

(\rho ,u,E)(x) := (\~\rho (r), \~u(r)\vec{}e, \~E(r)\vec{}e),(1.3)

where \vec{}e = x
r is a unit vector. The system (1.2) is subjected to the boundary value

conditions:

(\rho | \Gamma 0 , \rho | \Gamma 1 , \rho u| \Gamma 0) = (\~\rho (r0), \~\rho (r1), \~\rho (r0)\~u(r0)\vec{}e) = (\rho 0, \rho 1, j0\vec{}e)(1.4)

for positive constants (\rho 0, \rho 1, j0). Then, from (1.3), the system (1.2) with boundary
value conditions (1.4) can be rewritten as the following boundary value problem:\left\{         

(rn - 1\~\rho \~u)r = 0,

(rn - 1\~\rho \~u2)r + rn - 1\~\rho r = rn - 1\~\rho ( \~E  - \~u
\tau ), r \in (r0, r1),

(rn - 1 \~E)r = rn - 1(\~\rho  - \~b(r)),

(\~\rho (r0), \~\rho (r1), \~u(r0)) = (\rho 0, \rho 1, j0/\rho 0).

(1.5)

Obviously, each pair of the solution (\~\rho , \~u, \~E) for (1.5) always corresponds to a solution
(\rho ,u,E) of the system (1.2) with (1.4). The sonic state is redefined by | \~u| =M = 1,
the flow of (1.5) is subsonic if | \~u| < 1, and the flow is supersonic if | \~u| > 1.

Let \~J = \~\rho \~u be the current density. Without loss of generality, we also take \~J > 0.
Integrating (1.5)1 over [r0, r] and by (1.5)4, we have

\~J(r) =
j0r

n - 1
0

rn - 1
, r \in [r0, r1],(1.6)
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STRUCTURAL STABILITY OF SUBSONIC STEADY-STATES 7743

and (1.5)2 is reduced to\Biggl( 
1 - 

\~J2

\~\rho 2

\Biggr) 
\~\rho r  - 

n - 1

r

\~J2

\~\rho 
= \~\rho \~E  - 

\~J

\tau 
, r \in (r0, r1).(1.7)

Note that, the sonic state is \~u= 1. Therefore, the sonic boundary value conditions of
(1.5) are proposed as

\rho 0 = j0, \rho 1 =
j0r

n - 1
0

rn - 1
1

.(1.8)

In order to further simplify the system (1.5), we define \scrJ := j0r
n - 1
0 > 0 and

introduce a new variable

m(r) := rn - 1\~\rho (r), r \in [r0, r1].

It then follows from (1.6) that

\~J =
\scrJ 

rn - 1
, \~\rho =

m

rn - 1
, \~u=

\scrJ 
m
, r \in [r0, r1],(1.9)

so that (1.5) with sonic boundary value conditions (1.8) are transformed into\left\{         
\biggl( 
1 - \scrJ 2

m2

\biggr) 
mr =m

\biggl( 
\~E +

n - 1

r

\biggr) 
 - \scrJ 

\tau 
,

(rn - 1 \~E)r =m - B(r),

m(r0) =m(r1) =\scrJ ,

(1.10)

where the function B(r) is defined by

B(r) := rn - 1\~b(r) for r \in [r0, r1].

Throughout this paper, we denote

B = ess inf
r\in [r0,r1]

B(r), B = ess sup
r\in [r0,r1]

B(r).

As a result, to find a solution of (1.2), (1.4), and (1.8) is equivalent to solving (1.10).
Clearly, the flow of the new system (1.10) is subsonic if m > \scrJ and is supersonic if
0<m< \scrJ . Furthermore, (1.10)1 is degenerate at the boundary, which will cause us
some essential difficulties.

Background of research. The existence of subsonic/supersonic/transonic solu-
tions to the stationary hydrodynamic model for semiconductors has been extensively
investigated. For subsonic flows, Degond and Markowich [13] first showed the exis-
tence and uniqueness of subsonic solutions under a strongly subsonic background on
a one-dimensional (1-d) bounded domain, and in [14], they further proved the exis-
tence and local uniqueness of smooth solutions under a smallness assumptions on the
data in a three-dimensional bounded domain. Since then, the subsonic steady-states
have been studied in different cases (see [1, 4, 5, 24]). For supersonic flows, Peng
and Violet [29] showed the existence and uniqueness of supersonic solutions under a
strongly supersonic background on a 1-D bounded domain. Regarding the transonic
flows, when the boundary setting is still subsonic, but the doping profile is supersonic,
by carrying out phase-plane analysis, Ascher et al. [2] first observed that there are
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7744 JIANING XU, MING MEI, AND SHINYA NISHIBATA

infinitely many transonic steady-states with shocks for the system. This result was
then generalized by Rosini [30] for the potential flows. On the other hand, by us-
ing the method of vanishing viscosity, Gamba technically constructed 1-D transonic
steady-states with shocks in [17] and two-dimensional (2-D) transonic shocks in [18].
When the boundary data are separated by the sonic line, namely, one side boundary
is supersonic, and the other side is subsonic, Luo and Xin [23] thoroughly studied the
structure of stationary transonic shocks, in the case of relaxation time \tau =\infty , namely,
no semiconductor effect related. Regarding the smooth transonic steady-states, Wang
and Xin [34] technically studied the smooth transonic flows of Meyer type in de Laval
nozzles, and Weng-Xin-Yuan [37] further proved the existence of smooth symmetric
transonic flows for the nozzles with nonzero angular velocity and vorticity. Very re-
cently, by carrying out analysis on the local singularity, Wei et al. [36] observed two
different types of C\infty -smooth transonic steady-states.

When the boundary values are on the sonic line, the structure of the physical solu-
tions becomes more complicated and sundry. Mei and his group [10, 11, 12, 20, 21, 36]
first proposed this critical boundary case, and realized that the doping profile plays a
crucial role for the existence/nonexistence of the physical solutions to the stationary
system of semiconductor models. For the 1-D stationary Euler--Poisson system, when
the doping profile is subsonic, Li et al. [20] proved that there exist many types of
physical solutions: a unique interior subsonic solution, at least one interior supersonic
solution, infinitely many transonic shocks once the relation time is large, and infinitely
many C1-smooth transonic solutions once the relation time is small. When the dop-
ing profile is supersonic, they [21] showed that the Euler--Poisson system with sonic
boundary usually does not possess any physical solutions. Only in the case that the
doping profile is sufficiently close to the sonic line, there exist a supersonic solution
and infinitely many transonic shocks, and no subsonic solutions. When the doping
profile is transonic, Chen et al. [10] further showed that the existence/nonexistence
of these subsonic/supersonic/transonic solutions are dependent upon the domination
of subsonic region or supersonic region of the doping profile. Precisely saying, when
the subsonic region of doping profile is dominated, the structure of physical solutions
is similar to the case of subsonic doping profile studied in [20], while, when the super-
sonic region of doping profile is dominated, then the structure of physical solutions
is similar to the case of supersonic doping profile studied in [21]. The 2-D and three-
dimensional (3-D) radial cases were further investigated in [11, 12]. The quasi-neutral
limits were studied in [9].

Regarding the Euler--Poisson system without the semiconductor effect (the case
of \tau =\infty ) for nozzle flows, the subsonic/supersonic/transonic steady-states with the
subsonic boundary/supersonic boundary/transonic boundary have been extensively
studied. See [3, 4, 5, 6, 7, 32, 33, 35] and references therein. For the subsonic flows
for the thermal semiconductor models, we refer to [26, 27, 28].

Motivation and difficulty. Note that the doping profile plays a key role for the
existence/nonexistence of all types of physical solutions to the stationary hydrody-
namic system with sonic boundary. So, from both of mathematical and physical points
of view, it is quite interesting and important to study the structural stability of these
steady-states, when the doping profiles are perturbed. Namely, once the perturbations
of doping profiles are small, are the corresponding subsonic/supersonic/transonic so-
lutions regarded also as small perturbations? This issue was first addressed by Luo
et al. [22], where the transonic shocks are proved to be structurally stable in the case
of \tau = \infty (no semiconductor effect) with transonic boundary. Since these transonic
shocks jump the sonic line without interaction, there is no singularity for the structural
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STRUCTURAL STABILITY OF SUBSONIC STEADY-STATES 7745

stability near the sonic line. Recently, Feng, Mei, and Zhang [16] attempted the case of
C1-smooth transonic steady-states, where the transonic solutions cross the sonic line,
and the singularity for the system near the sonic line are formed. By taking some
technical analysis on the local singularity, they [16] successfully proved the struc-
tural stability of the smooth transonic solutions once the doping profile is a small
perturbation. When the boundary data are sonic, as showed in [20], the smooth
subsonic/supersonic/transonic steady-states possess some serious singularities at the
boundary, because the derivatives of these physical solutions at the sonic boundary are
 - \infty . For the 1-D case with subsonic doping profile, by using the technical weighted-
energy method with the help of monotonicity argument, Feng, Hu, and -Mei [15]
solved the structural stability of the subsonic steady-states. However, for the multi-
ple dimensional case with sonic boundary, the structural stability is more challenging
and significant to study. This is our study motivation in the present paper.

The main objective of this paper is to investigate the structural stability of in-
terior subsonic solutions to the sonic boundary value problem (1.10) in 2-D and 3-D
cases. There are some technical issues and difficulties in this work. First, we need
to properly set down the multiple dimensional system with the sonic boundary. The
other is to treat the challenging singularity of subsonic steady-states at the sonic
boundary in the proof of structural stability. Owing to the boundary degeneracy, we
need to analyze the boundary behavior of the first order derivative of mi(r) (i= 1,2)
at two endpoints, and to discover whether the singularity will occur at the two end-
points, which is important for us to establish the local structural stability estimates
near the two endpoints. The optimal weight function will be introduced to treat the
singularity of the derivatives of subsonic steady-states at the sonic boundary. The
monotonicity argument will also play a crucial role in establishing the structural sta-
bility estimates near two endpoints. Besides, different from [15], we don't need to add
the monotonicity restriction on doping profiles anymore through further analysis and
discussion.

The rest of this paper is organized as follows. In section 2, we give the important
preliminaries from the foregoing research, and then we state the main result of this
paper. In section 3, we prove the structural stability of interior subsonic solutions to
the sonic boundary value problem (1.10) in 2-D and 3-D cases.

2. Preliminaries and the main result. In this section, we first recall the
existence and uniqueness of the interior subsonic solution to the sonic boundary value
problem (1.10) in 2-D and 3-D cases, which have been obtained in [11]. Then, we
state the main result of this paper.

Because the system (1.10) is degenerate at the boundary, we have to define the
interior subsonic solution in the weak sense as that in [11, 20].

Definition 2.1. m(r) is said to be an interior subsonic solution to the sonic
boundary value problem (1.10) if we have the following:

(i) (m - \scrJ )2 \in H1
0 ((r0, r1));

(ii) m(r)>\scrJ for r \in (r0, r1);
(iii) m(r0) =m(r1) =\scrJ ;
(iv) for any test function \varphi \in H1

0 ((r0, r1)), it holds that\int r1

r0

\biggl( 
rn - 1

\biggl( 
1

m
 - \scrJ 2

m3

\biggr) 
mr +

rn - 1\scrJ 
\tau m

\biggr) 
\varphi rdr

+

\int r1

r0

(m - B(r) + rn - 3(n - 1)(n - 2))\varphi dr= 0;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7746 JIANING XU, MING MEI, AND SHINYA NISHIBATA

(v) \~E(r) is denoted by

\~E(r) =
rn - 1
0

rn - 1
\~E(r0) +

1

rn - 1

\int r

r0

(m - B)(s)ds,(2.1)

where \~E(r0) =
1
\tau  - n - 1

r0
.

We recall the existence and uniqueness of interior subsonic solution to the sonic
boundary value problem (1.10) in 2-D and 3-D cases (Theorem 1.4 in [11]) as follows.

Proposition 2.2 (existence of interior subsonic solutions [11]).
1. Two-dimensional case: n = 2. Suppose that the doping profile B(r) \in 

L\infty ((r0, r1)) and B \leq B(r)\leq B satisfying B+ 1
\tau >\scrJ and B+ \scrJ 

\tau (B+1/\tau )
>\scrJ ,

then the sonic boundary value problem (1.10) admits a unique interior sub-
sonic solution (m, \~E)(r) \in C1/2

\bigl( 
[r0, r1]

\bigr) 
\times H1((r0, r1)). Moreover, m(r) sat-

isfies the estimate

\scrJ + \lambda sin

\biggl( 
\pi \cdot r - r0

r1  - r0

\biggr) 
\leq m(r)\leq B +

1

\tau 
, r \in [r0, r1],(2.2)

where \lambda > 0 is a small constant depending only on r0, r1, \scrJ , \tau , B, and B.
2. Three-dimensional case: n = 3. Define \scrB := infr\in [r0,r1]

\bigl\{ 
B(r) + 2r

\tau  - 2
\bigr\} 
and

\scrB := supr\in [r0,r1]

\bigl\{ 
B(r) + 2r

\tau  - 2
\bigr\} 
. Assume that \scrB >\scrJ and minr\in [r0,r1](B(r)+

2r\scrJ 
\tau \scrB  - 2)>\scrJ , then the sonic boundary value problem (1.10) possesses a unique

interior subsonic solution (m, \~E)(r)\in C1/2
\bigl( 
[r0, r1]

\bigr) 
\times H1((r0, r1)). Moreover,

m(r) satisfies the estimate

\scrJ + \=\lambda sin

\biggl( 
\pi \cdot r - r0

r1  - r0

\biggr) 
\leq m(r)\leq \scrB , r \in [r0, r1],(2.3)

where \=\lambda > 0 is a small constant depending only on r0, r1, \scrJ , \tau , \scrB , and \scrB .
It is noticed that the sonic boundary value problem (1.10) is degenerate only at

the boundary. By the standard theory for elliptic interior regularity and Sobolev's
embedding theorem, if we assume the doping profile B(r) \in C

\bigl( 
[r0, r1]

\bigr) 
, then the

corresponding interior subsonic solution (m, \~E)(r) \in 
\bigl( 
C1((r0, r1)) \cap C1/2

\bigl( 
[r0, r1]

\bigr) \bigr) 
\times 

C1
\bigl( 
[r0, r1]

\bigr) 
.

Now we state our main result for the structural stability of interior subsonic
steady-states as follows.

Theorem 2.3. For i= 1,2, assume that doping profiles Bi(r) \in C
\bigl( 
[r0, r1]

\bigr) 
, \scrJ <

Bi \leq Bi(r) \leq Bi on [r0, r1] for n = 2, and \scrJ + 2 < Bi \leq Bi(r) \leq Bi on [r0, r1] for
n= 3. Let (mi, \~Ei)(r) be two interior subsonic solutions to the sonic boundary value
problem (1.10) corresponding to doping profiles Bi(r). Then there exists a constant
\tau 0(r0,B1(r0),B2(r0)) such that for any 0 < \tau < \tau 0, the interior subsonic solutions
(mi, \~Ei)(r) to (1.10) are structurally stable, namely,

\| m1  - m2\| C([r0,r1]) + \| (r1  - r)1/2(m1  - m2)r\| C([r0,r1])

+ \| \~E1  - \~E2\| C1([r0,r1]) <C\| B1  - B2\| C([r0,r1]),

where C is a positive constant independent of \| B1  - B2\| C([r0,r1]).

Because the interior subsonic solution of (1.10) is degenerate at the boundary, it
is difficult to directly study the structural stability of solutions on the whole domain

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRUCTURAL STABILITY OF SUBSONIC STEADY-STATES 7747

[r0, r1]. Therefore, we have to divide the whole domain [r0, r1] into three domains as
below:

[r0, r1] = [r0, r0 + \delta 0)\cup [r0 + \delta 0, r1  - \delta 0]\cup (r1  - \delta 0, r1],

where \delta 0 \in (0, (r1 - r0)/2) would be determined later (see Lemma 3.8 for details). And
then we will establish the structural stability estimates on three domains, respectively.
The most important thing is that we need to analyze the boundary behavior of the
first order derivative of mi(r) (i= 1,2) at two endpoints, and confirm whether the two
endpoints are singular points. The monotonicity argument will also play a crucial role
in establishing the structural stability estimates near two endpoints.

3. The structural stability of interior subsonic solutions. In this section,
we are going to prove the structural stability of interior subsonic solutions to the sonic
boundary value problem (1.10) for both 2-D and 3-D cases, in other words, we devote
ourselves to proving Theorem 2.3.

We first focus on proving the structural stability of interior subsonic solutions to
the sonic boundary value problem (1.10) in the 2-D case. For i= 1,2, let (mi, \~Ei)(r)
denote the interior subsonic solutions to (1.10) with n= 2 relative to doping profiles
Bi(r), then (mi, \~Ei)(r) satisfy the following system:\left\{         

\biggl( 
1 - \scrJ 2

(mi)2

\biggr) 
(mi)r =mi

\biggl( 
\~Ei +

1

r

\biggr) 
 - \scrJ 

\tau 
,

(r \~Ei)r =mi  - Bi(r), r \in (r0, r1),

mi(r0) =mi(r1) =\scrJ .

(3.1)

Theorem 3.1. For i = 1,2, let doping profiles Bi(r) \in C
\bigl( 
[r0, r1]

\bigr) 
, \scrJ < Bi \leq 

Bi(r)\leq Bi on [r0, r1], and \tau satisfy

0< \tau <min

\biggl\{ 
 - 1 +

\sqrt{} 
1 + r0(B1(r0) - \scrJ )/2

2(B1(r0) - \scrJ )
,(3.2)

 - 1 +
\sqrt{} 
1 + r0(B2(r0) - \scrJ )/2

2(B2(r0) - \scrJ )
, r0

\biggr\} 
.

Then, the interior subsonic solutions (mi, \~Ei)(r) to (3.1) are structurally stable in the
sense that

\| m1  - m2\| C([r0,r1]) + \| (r1  - r)1/2(m1  - m2)r\| C([r0,r1])(3.3)

+ \| \~E1  - \~E2\| C1([r0,r1]) <C\| B1  - B2\| C([r0,r1]),

where C > 0 is a constant independent of \| B1  - B2\| C([r0,r1]).

In order to use the monotonicity argument to establish the structural stability
estimates near two endpoints, we introduce the following modified comparison prin-
ciple.

Lemma 3.2 (comparison principle). Suppose that the conditions in Theorem 3.1
hold. If B1(r)\geq B2(r) on [r0, r1], then,

m1(r)\geq m2(r) for r \in [r0, r1].(3.4)
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Proof. For i= 1,2, substituting (3.1)2 into (3.1)1 gives\left\{   
\biggl( 
r

\biggl( 
1

mi
 - \scrJ 2

(mi)3

\biggr) 
(mi)r

\biggr) 
r

+

\biggl( 
r\scrJ 
\tau mi

\biggr) 
r

 - (mi  - Bi(r)) = 0, r \in (r0, r1),

mi(r0) =mi(r1) =\scrJ .

(3.5)

Since mi is the interior subsonic solution to (3.5), we have the approximate solution
sequence \{ mij\} 0<j<\scrJ \subset C1

\bigl( 
[r0, r1]

\bigr) 
which satisfies the following integral equality:\int r1

r0

r

\biggl[ \biggl( 
1

mij
 - j2

(mij)3

\biggr) 
(mij)r +

j

\tau mij

\biggr] 
\varphi rdr(3.6)

+

\int r1

r0

(mij  - Bi)\varphi dr= 0 for any\varphi \in H1
0 ((r0, r1)).

Let us denote

A(U,V ) =

\biggl( 
1

U
 - j2

U3

\biggr) 
V +

j

\tau U
.

Subtracting (3.6) with i= 1 from (3.6) with i= 2, for any \varphi \geq 0 and \varphi \in H1
0 ((r0, r1)),

by B1(r)\geq B2(r) on [r0, r1], we obtain\int r1

r0

r[A(m2j , (m2j)r) - A(m1j , (m1j)r)]\varphi rdr+

\int r1

r0

(m2j  - m1j)\varphi dr(3.7)

=

\int r1

r0

(B2  - B1)\varphi dr\leq 0.

Inequality (3.7) is similar to (19) in Lemma 2.2 of [20], owing to r \in [r0, r1], if we
apply the same arguments as that in Lemma 2.2 of [20], we have the same result as
Lemma 2.2 of [20], namely,

m1j(r)\geq m2j(r) for r \in [r0, r1], 0< j <\scrJ .(3.8)

Taking the limit as j \rightarrow \scrJ  - on both side of (3.8), we can get (3.4).

First, we establish the local structural stability estimate of interior subsonic so-
lutions near the left endpoint r= r0. Before we establish the local structural stability
estimate, we need to analyze the boundary behavior of the first order derivative of
mi(r) (i = 1,2) at r = r0. Owing to \~Ei(r0) =

1
\tau  - 1

r0
, the plausible singularity at the

left endpoint r= r0 could be removable.

Lemma 3.3. Assume that the conditions in Theorem 3.1 are satisfied. Then,

lim
r\rightarrow r+0

(mi)r(r) =
\scrJ 
4

\biggl( 
1

\tau 
 - 
\sqrt{} 

1

\tau 2
 - 8

r0\tau 
(1 + (Bi(r0) - \scrJ )\tau )

\biggr) 
=:Ai > 0, i= 1,2.

(3.9)

Proof. Thanks to mi(r0) = \scrJ and \~Ei(r0) =
1
\tau  - 1

r0
> 0, we know that limr\rightarrow r+0

(mi)r(r) exists, which has been proved in Theorem 3.6 of [12].
By (3.1)1, we have

(mi)r =
(mi)

2 \~Ei

mi +\scrJ 
+

(mi)
2

(mi +\scrJ )(mi  - \scrJ )

\biggl( 
\scrJ \~Ei  - 

\biggl( 
\scrJ 
\tau 

 - mi

r

\biggr) \biggr) 
.
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Applying the L'Hospital rule and (3.1)2, we calculate that

Ai = lim
r\rightarrow r+0

(mi)r

= lim
r\rightarrow r+0

(mi)
2 \~Ei

mi +\scrJ 
+ lim

r\rightarrow r+0

(mi)
2

(mi +\scrJ )(mi  - \scrJ )

\biggl( 
\scrJ \~Ei  - 

\biggl( 
\scrJ 
\tau 

 - mi

r

\biggr) \biggr) 
=

\scrJ 
2

\biggl( 
1

\tau 
 - 1

r0

\biggr) 
+

\scrJ 
2

lim
r\rightarrow r+0

1

mi  - \scrJ 

\biggl( 
\scrJ \~Ei  - 

\biggl( 
\scrJ 
\tau 

 - mi

r

\biggr) \biggr) 
=

\scrJ 
2

\biggl( 
1

\tau 
 - 1

r0

\biggr) 
+

\scrJ 
2

lim
r\rightarrow r+0

1

(mi)r

\biggl( 
\scrJ ( \~Ei)r +

(mi)r
r

 - mi

r2

\biggr) 
=

\scrJ 
2

\biggl( 
1

\tau 
 - 1

r0

\biggr) 
+

\scrJ 2

2
lim

r\rightarrow r+0

mi  - Bi  - \~Ei

r(mi)r
+

\scrJ 
2

1

r0
 - \scrJ 

2
lim

r\rightarrow r+0

mi

r2(mi)r

=
\scrJ 
2\tau 

+
\scrJ 2

2

\scrJ  - Bi(r0)

r0Ai
 - \scrJ 2

2

\biggl( 
1

\tau 
 - 1

r0

\biggr) 
1

r0Ai
 - \scrJ 2

2r20Ai

=
\scrJ 
2\tau 

+
\scrJ 2

2r0Ai

\biggl( 
\scrJ  - Bi(r0) - 

1

\tau 

\biggr) 
.

A direct computation indicates that there are two solutions:

A
(1)
i =

\scrJ 
4

\biggl( 
1

\tau 
+

\sqrt{} 
1

\tau 2
 - 8

r0\tau 
(1 + (Bi(r0) - \scrJ )\tau )

\biggr) 
=O

\biggl( 
1

\tau 

\biggr) 
or

A
(2)
i =

\scrJ 
4

\biggl( 
1

\tau 
 - 
\sqrt{} 

1

\tau 2
 - 8

r0\tau 
(1 + (Bi(r0) - \scrJ )\tau )

\biggr) 
=C\scrJ +O(\tau ).

According to the relevant argument in Theorem 3.6 of [12], we can exclude A
(1)
i , thus,

we get (3.9).

We are able to establish the local structural stability estimate of interior subsonic
solutions to the boundary value problem (3.1) on an intrinsic neighborhood of the left
endpoint r= r0 by using Lemmas 3.2 and 3.3.

Lemma 3.4. Let all assumptions in Theorem 3.1 hold, and let B1(r)\geq B2(r) on
[r0, r1]. Then there are two positive constants \delta 1 \in (0, (r1  - r0)/2) and C independent
of \| B1  - B2\| C([r0,r1]) such that

\| m1  - m2\| C1([r0,r0+\delta 1)) + \| \~E1  - \~E2\| C1([r0,r0+\delta 1)) \leq C\| B1  - B2\| C([r0,r1]).(3.10)

Proof. Note that the function g(s) = s3

s+\scrJ is increasing for s > 0, thus, from
Lemma 3.2, we have

(m1)
3

m1 +\scrJ 
\geq (m2)

3

m2 +\scrJ 
, r \in [r0, r1].(3.11)

And it follows from (2.2) and (3.4) that

\scrJ \leq \scrJ + \lambda 2 sin

\biggl( 
\pi \cdot r - r0

r1  - r0

\biggr) 
\leq m2(r)\leq m1(r)\leq B1 +

1

\tau 
, r \in [r0, r1].(3.12)

By (3.1)1, we get, for i= 1,2,

(mi)r =
(mi)

3

(mi)2  - \scrJ 2

\biggl( 
\~Ei +

1

r
 - \scrJ 

mi\tau 

\biggr) 
=:

(mi)
3 \^Ei

(mi)2  - \scrJ 2
.(3.13)
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7750 JIANING XU, MING MEI, AND SHINYA NISHIBATA

Taking the difference of (3.13)| i=1 and (3.13)| i=2, one has

(m1  - m2)r(3.14)

=
(m1)

3 \^E1

(m1)2  - \scrJ 2
 - (m2)

3 \^E2

(m2)2  - \scrJ 2

=
(m1)

3

m1 +\scrJ 
\^E1

m1  - \scrJ 
 - (m2)

3

m2 +\scrJ 
\^E1

m1  - \scrJ 

+
(m2)

3

m2 +\scrJ 
\^E1

m1  - \scrJ 
 - (m2)

3

m2 +\scrJ 
\^E2

m2  - \scrJ 

=
\^E1

m1  - \scrJ 

\biggl( 
(m1)

3

m1 +\scrJ 
 - (m2)

3

m2 +\scrJ 

\biggr) 
+

(m2)
3

m2 +\scrJ 

\Biggl( 
\^E1

m1  - \scrJ 
 - 

\^E2

m2  - \scrJ 

\Biggr) 
.

We claim that there exist two positive constants \delta 1 \in (0, (r1  - r0)/2) and M1 inde-
pendent of \| B1  - B2\| C([r0,r1]) such that

\^E1

m1  - \scrJ 
(r)\leq M1

\scrJ \tau 
, r \in [r0, r0 + \delta 1), and(3.15) \Biggl( 

\^E1

m1  - \scrJ 
 - 

\^E2

m2  - \scrJ 

\Biggr) 
(r)\leq M1\| B1  - B2\| C([r0,r1]), r \in [r0, r0 + \delta 1).

Therefore, using the monotonicity relation (3.11) and substituting (3.15) to (3.14),
we obtain

(m1  - m2)r \leq 
M1

\scrJ \tau 

\biggl( 
(m1)

3

m1 +\scrJ 
 - (m2)

3

m2 +\scrJ 

\biggr) 
+M1\| B1  - B2\| C([r0,r1])

(m2)
3

m2 +\scrJ 
(3.16)

\leq C(m1  - m2) +C\| B1  - B2\| C([r0,r1]), r \in [r0, r0 + \delta 1),

where we used the mean-value theorem of differentials and (3.12) in the last inequality.
Now we prove that the estimates in (3.15) hold. Otherwise, for any \delta \in (0, (r1  - 

r0)/2) and M > 0, there exists r\delta \in [r0, r0 + \delta ) such that

\^E1

m1  - \scrJ 
(r\delta )>

M

\scrJ \tau 
or

\Biggl( 
\^E1

m1  - \scrJ 
 - 

\^E2

m2  - \scrJ 

\Biggr) 
(r\delta )>M\| B1  - B2\| C([r0,r1]).(3.17)

Due to the arbitrariness of \delta , we choose \delta = (r1  - r0)/n with n= 3,4,5, . . . , then, for
any M > 0, there exists rn \in [r0, r0 + \delta ) such that

\^E1

m1  - \scrJ 
(rn)>

M

\scrJ \tau 
or

\Biggl( 
\^E1

m1  - \scrJ 
 - 

\^E2

m2  - \scrJ 

\Biggr) 
(rn)>M\| B1  - B2\| C([r0,r1]),

which indicate that

lim
rn\rightarrow r+0

\^E1

m1  - \scrJ 
(rn)\geq 

M

\scrJ \tau 
(3.18)

or

lim
rn\rightarrow r+0

\Biggl( 
\^E1

m1  - \scrJ 
 - 

\^E2

m2  - \scrJ 

\Biggr) 
(rn)\geq M\| B1  - B2\| C([r0,r1]).(3.19)
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By using the L'Hospital rule, (3.1)2 and (3.9), we can derive, for i= 1,2,

lim
r\rightarrow r+0

\^Ei

mi  - \scrJ 
(r)(3.20)

= lim
r\rightarrow r+0

1

mi  - \scrJ 

\biggl( 
\~Ei +

1

r
 - \scrJ 

mi\tau 

\biggr) 
(r)

= lim
r\rightarrow r+0

1

(mi)r

\biggl( 
( \~Ei)r  - 

1

r2
+

\scrJ (mi)r
(mi)2\tau 

\biggr) 
(r)

= lim
r\rightarrow r+0

1

(mi)r

\biggl( 
1

r
(mi  - Bi  - \~Ei) - 

1

r2

\biggr) 
(r) + lim

r\rightarrow r+0

\scrJ 
(mi)2(r)\tau 

=
1

Ai

\biggl( 
1

r0

\biggl( 
\scrJ  - Bi(r0) - 

\biggl( 
1

\tau 
 - 1

r0

\biggr) \biggr) 
 - 1

r20

\biggr) 
+

1

\scrJ \tau 

=
1

r0Ai

\biggl( 
\scrJ  - Bi(r0) - 

1

\tau 

\biggr) 
+

1

\scrJ \tau 
<

1

\scrJ \tau 
,

and further have

lim
r\rightarrow r+0

\Biggl( 
\^E1

m1  - \scrJ 
 - 

\^E2

m2  - \scrJ 

\Biggr) 
(r)(3.21)

=
1

r0A1

\biggl( 
\scrJ  - B1(r0) - 

1

\tau 

\biggr) 
 - 1

r0A2

\biggl( 
\scrJ  - B2(r0) - 

1

\tau 

\biggr) 
=

1

r0\tau 

\biggl( 
\tau (\scrJ  - B1(r0)) - 1

A1
 - \tau (\scrJ  - B2(r0)) - 1

A2

\biggr) 
=

1

2\scrJ \tau 

\biggl( \sqrt{} 
1 - 8

r0
(\tau + (B2(r0) - \scrJ )\tau 2) - 

\sqrt{} 
1 - 8

r0
(\tau + (B1(r0) - \scrJ )\tau 2)

\biggr) 
=

2\tau 

\scrJ r0

1\sqrt{} 
1 - 8

r0
(\tau + (\xi  - \scrJ )\tau 2)

(B1(r0) - B2(r0))

\leq C1\| B1  - B2\| C([r0,r1]),

where \xi \in (B2(r0),B1(r0)). Owing to the arbitrariness of M in (3.18) and (3.19), we
choose M = 2 in (3.18), which gives a contradiction to (3.20), and we choose M = 2C1

in (3.19), which contradicts (3.21).
Next, we multiply (3.16) by (m1  - m2)(r) and apply Cauchy's inequality to get

((m1  - m2)
2)r(r)\leq C(m1  - m2)

2(r) +C\| B1  - B2\| 2C([r0,r1])
, r \in [r0, r0 + \delta 1).

Applying Gronwall's inequality to above inequality gives

(m1  - m2)
2(r)\leq C\| B1  - B2\| 2C([r0,r1])

, r \in [r0, r0 + \delta 1),

thus,

(m1  - m2)(r)\leq C\| B1  - B2\| C([r0,r1]), r \in [r0, r0 + \delta 1).

The above inequality together with (3.14) implies

| m1  - m2| (r) + | (m1  - m2)r| (r)\leq C\| B1  - B2\| C([r0,r1]), r \in [r0, r0 + \delta 1).(3.22)
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7752 JIANING XU, MING MEI, AND SHINYA NISHIBATA

Finally, integrating (3.1)2 over [r0, r] and recalling that \~Ei(r0) =
1
\tau  - 

1
r0
, we obtain

\~Ei(r) =
r0
r

\biggl( 
1

\tau 
 - 1

r0

\biggr) 
+

1

r

\int r

r0

(mi  - Bi)(s)ds,(3.23)

and further derive

| \~E1  - \~E2| (r)\leq 
1

r

\int r

r0

| m1  - m2| (s)ds+
1

r

\int r

r0

| B1  - B2| (s)ds(3.24)

\leq C\| B1  - B2\| C([r0,r1]), r \in [r0, r0 + \delta 1).

From (3.1)2, we calculate that

( \~E1  - \~E2)r(r) = - 1

r
( \~E1  - \~E2)(r) +

1

r
(m1  - m2)(r) - 

1

r
(B1  - B2)(r).(3.25)

It then follows from (3.22) and (3.24) that

| ( \~E1  - \~E2)r| (r)\leq C\| B1  - B2\| C([r0,r1]), r \in [r0, r0 + \delta 1).(3.26)

Hence, the desired estimate (3.10) can be directly obtained from (3.22), (3.24), and
(3.26).

Second, we establish the local structural stability estimate of interior subsonic
solutions near the right endpoint r = r1. Before proceeding, we need to analyze the
boundary behavior of the first order derivative of mi(r) (i = 1,2) at r = r1. Inspired
by Proposition 2.5 in [20], we can derive the following estimates of interior subsonic
solutions near r= r1.

Lemma 3.5. Let Bi(r) \in L\infty ((r0, r1)), Bi > \scrJ (i = 1,2), and 0 < \tau < r0. Then,
\~Ei(r1) <

1
\tau  - 1

r1
, and there exist positive constants \^Cl (l = 1,2,3,4) such that, for r

near r1,

\^C1(r1  - r)1/2 <mi(r) - \scrJ < \^C2(r1  - r)1/2,(3.27)

 - \^C3(r1  - r) - 1/2 < (mi)r(r)< - \^C4(r1  - r) - 1/2,(3.28)

where \^C2 > \^C1 and \^C3 > \^C4.

The proof of Lemma 3.5 is similar to that in Proposition 2.5 of [20] and is omitted
here. It is easy to see that limr\rightarrow r - 1

(mi)r(r) = - \infty from (3.28), and then we deduce

that the singularity will occur at the right endpoint r= r1. But from (3.28), we know
that the singularity at r = r1 can be well controlled by the (r1  - r)1/2-weight, thus,
we can establish the local weighted structural stability estimate near r= r1.

Lemma 3.6. Under the conditions of Theorem 3.1, it holds that

lim
r\rightarrow r - 1

(r1  - r)1/2(mi)r(r) = - \scrJ 
2

\sqrt{} 
1

r1

\int r1

r0

\biggl( 
Bi  - mi +

1

\tau 

\biggr) 
(r)dr=: ai < 0, i= 1,2.

(3.29)

Proof. By (3.28), we can know that the coefficient 1  - \scrJ 2

(mi)2
in the degenerate

principal part of (3.1)1 is comparable to (r1 - r)1/2 near the endpoint r= r1. Therefore,
the regularity theory of boundary degenerate elliptic equations in 1-D case [31] ensures
that (r1  - r)1/2(mi)r(r) can be continuous up to the right endpoint r= r1.
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Now we compute limr\rightarrow r - 1
(r1  - r)1/2(mi)r(r). Multiplying (3.13) by (r1  - r)1/2,

we have

(r1  - r)1/2(mi)r =
(mi)

3

mi +\scrJ 

\biggl( 
\~Ei +

1

r
 - \scrJ 

\tau mi

\biggr) 
(r1  - r)1/2

mi  - \scrJ 
.(3.30)

From (3.30) and the L'Hospital rule, we calculate that

ai = lim
r\rightarrow r - 1

(r1  - r)1/2(mi)r

= lim
r\rightarrow r - 1

(mi)
3

mi +\scrJ 
lim

r\rightarrow r - 1

\biggl( 
\~Ei +

1

r
 - \scrJ 

\tau mi

\biggr) 
lim

r\rightarrow r - 1

(r1  - r)1/2

mi  - \scrJ 

=
\scrJ 2

2

\biggl( 
\~Ei(r1) +

1

r1
 - 1

\tau 

\biggr) 
lim

r\rightarrow r - 1

 - 1
2 (r1  - r) - 1/2

(mi)r

=
\scrJ 2

4

\biggl( 
\~Ei(r0) - \~Ei(r1) +

1

r0
 - 1

r1

\biggr) 
1

ai
.

It follows from (3.28) that we only reserve a negative root:

ai = - \scrJ 
2

\sqrt{} 
\~Ei(r0) - \~Ei(r1) +

1

r0
 - 1

r1

= - \scrJ 
2

\sqrt{} 
1

r1

\int r1

r0

\biggl( 
Bi  - mi +

1

\tau 

\biggr) 
(r)dr,

where we used (3.23) in the last equality.

We are able to establish the local weighted structural stability estimate of interior
subsonic solutions to the sonic boundary value problem (3.1) on an intrinsic neigh-
borhood of the right endpoint r = r1 by applying Lemma 3.2 and Lemmas 3.5 and
Lemma 3.6.

Lemma 3.7. Let all assumptions in Theorem 3.1 be satisfied, and let B1(r) \geq 
B2(r) on [r0, r1]. Then there exist two positive constants \delta 2 \in (0, (r1  - r0)/2) and C
independent of \| B1  - B2\| C([r0,r1]) such that

\| (r1  - r) - 1/2(m1  - m2)\| C((r1 - \delta 2,r1]) + \| (r1  - r)1/2(m1  - m2)r\| C((r1 - \delta 2,r1])(3.31)

+ \| \~E1  - \~E2\| C1((r1 - \delta 2,r1]) <C\| B1  - B2\| C([r0,r1]).

Proof. It follows from the estimate (3.27) that mi(r) - \scrJ 
(r1 - r)1/2

(i= 1,2) has the uniform

positive lower and upper bounds near r = r1, and then its reciprocal also has this
property.

Owing to the singularity occurs at r = r1, we can only establish the weighted
structural stability estimate near the right endpoint r= r1.

Taking the difference of (3.30)| i=1 and (3.30)| i=2, we get

(r1  - r)1/2(m1  - m2)r(3.32)

=
(m1)

2

m1 +\scrJ 

\biggl( 
m1

\biggl( 
\~E1 +

1

r

\biggr) 
 - \scrJ 

\tau 

\biggr) 
(r1  - r)1/2

m1  - \scrJ 

 - (m2)
2

m2 +\scrJ 

\biggl( 
m2

\biggl( 
\~E2 +

1

r

\biggr) 
 - \scrJ 

\tau 

\biggr) 
(r1  - r)1/2

m2  - \scrJ 
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7754 JIANING XU, MING MEI, AND SHINYA NISHIBATA

=
(m1)

2

m1 +\scrJ 

\biggl( 
m1

\biggl( 
\~E1 +

1

r

\biggr) 
 - \scrJ 

\tau 

\biggr) \biggl( 
(r1  - r)1/2

m1  - \scrJ 
 - (r1  - r)1/2

m2  - \scrJ 

\biggr) 
+

\biggl[ 
(m1)

2

m1 +\scrJ 

\biggl( 
m1

\biggl( 
\~E1 +

1

r

\biggr) 
 - \scrJ 

\tau 

\biggr) 
 - (m2)

2

m2 +\scrJ 

\biggl( 
m2

\biggl( 
\~E2 +

1

r

\biggr) 
 - \scrJ 

\tau 

\biggr) \biggr] 
(r1  - r)1/2

m2  - \scrJ 

= f(m1, \~E1)
(r1  - r)1/2

m1  - \scrJ 
(r1  - r)1/2

m2  - \scrJ 
m2  - m1

(r1  - r)1/2

+ (f(m1, \~E1) - f(m2, \~E2))
(r1  - r)1/2

m2  - \scrJ 
=: I1 + I2,

where

f(mi, \~Ei) =
(mi)

2

mi +\scrJ 

\biggl( 
mi

\biggl( 
\~Ei +

1

r

\biggr) 
 - \scrJ 

\tau 

\biggr) 
, i= 1,2.

Before we estimate I1 and I2 near r= r1, we first claim that

| \~Ei(r)| <C(B1 + 1/\tau ), r \in [r0, r1], i= 1,2,(3.33)

| \~E1(r1) - \~E2(r1)| <C\| B1  - B2\| C([r0,r1]),(3.34)

where the positive constant C is independent of \| B1  - B2\| C([r0,r1]). The estimates
(3.33)--(3.34) will be verified in Lemma 3.9.

Now we estimate I1 and I2 near r= r1, respectively. It follows from (3.12), (3.27),
and (3.33) that I1 can be estimated as

| I1| =
\bigm| \bigm| \bigm| \bigm| f(m1, \~E1)

(r1  - r)1/2

m1  - \scrJ 
(r1  - r)1/2

m2  - \scrJ 
m2  - m1

(r1  - r)1/2

\bigm| \bigm| \bigm| \bigm| <C
| m1  - m2| 
(r1  - r)1/2

.(3.35)

We estimate I2 as below

| I2| =
\bigm| \bigm| \bigm| \bigm| (f(m1, \~E1) - f(m2, \~E2))

(r1  - r)1/2

m2  - \scrJ 

\bigm| \bigm| \bigm| \bigm| (3.36)

<C| f(m1, \~E1) - f(m2, \~E2)| 

=C

\bigm| \bigm| \bigm| \bigm| 1r
\biggl( 

(m1)
3

m1 +\scrJ 
 - (m2)

3

m2 +\scrJ 

\biggr) 
 - \scrJ 

\tau 

\biggl( 
(m1)

2

m1 +\scrJ 
 - (m2)

2

m2 +\scrJ 

\biggr) 
+

(m1)
3

m1 +\scrJ 
\~E1  - 

(m2)
3

m2 +\scrJ 
\~E2

\bigm| \bigm| \bigm| \bigm| 
<C| m1  - m2| +C

\bigm| \bigm| \bigm| \bigm| \biggl( (m1)
3

m1 +\scrJ 
 - (m2)

3

m2 +\scrJ 

\biggr) 
\~E1 +

(m2)
3

m2 +\scrJ 
( \~E1  - \~E2)

\bigm| \bigm| \bigm| \bigm| 
<C| m1  - m2| +C| \~E1  - \~E2| 

<C
| m1  - m2| 
(r1  - r)1/2

+C

\bigm| \bigm| \bigm| \bigm| r1r ( \~E1(r1) - \~E2(r1))
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STRUCTURAL STABILITY OF SUBSONIC STEADY-STATES 7755

 - 1

r

\int r1

r

(m1  - m2)(s)ds+
1

r

\int r1

r

(B1  - B2)(s)ds

\bigm| \bigm| \bigm| \bigm| 
<C\| B1  - B2\| C([r0,r1]) +C

\biggl( 
| m1  - m2| (r)
(r1  - r)1/2

+
| m1  - m2| (\eta )
(r1  - \eta )1/2

\biggr) 
, \eta \in [r, r1],

where we used (3.12), (3.27), (3.33), (3.34), the mean-value theorem of differentials,
the mean-value theorem of integrals, and the equality

\~Ei(r) =
r1
r

\~Ei(r1) - 
1

r

\int r1

r

(mi  - Bi)(s)ds.(3.37)

Putting (3.35) and (3.36) into (3.32), near r= r1, we have

(r1  - r)1/2| (m1  - m2)r| (r)

(3.38)

<C\| B1  - B2\| C([r0,r1]) +C

\biggl( 
| m1  - m2| (r)
(r1  - r)1/2

+
| m1  - m2| (\eta )
(r1  - \eta )1/2

\biggr) 
, \eta \in [r, r1].

For | m1 - m2| (r)
(r1 - r)1/2

+ | m1 - m2| (\eta )
(r1 - \eta )1/2

, we claim that there exist two positive constants

\delta 2 \in (0, (r1  - r0)/2) and M2 such that

| m1  - m2| (r)
(r1  - r)1/2

\leq M2\| B1  - B2\| C([r0,r1]), r \in (r1  - \delta 2, r1].(3.39)

Otherwise, for any \delta \in (0, (r1  - r0)/2) and M > 0, there exists r\delta \in (r1  - \delta , r1] such
that

| m1  - m2| (r\delta )
(r1  - r\delta )1/2

>M\| B1  - B2\| C([r0,r1]).

Owing to the arbitrariness of \delta , we choose \delta = (r1  - r0)/n with n= 3,4,5, . . ., and for
arbitrary M > 0, there is rn \in (r1  - \delta , r1] such that

| m1  - m2| (rn)
(r1  - rn)1/2

>M\| B1  - B2\| C([r0,r1]),

which indicates that

lim
rn\rightarrow r - 1

| m1  - m2| (rn)
(r1  - rn)1/2

\geq M\| B1  - B2\| C([r0,r1]).(3.40)

We can calculate limr\rightarrow r - 1

| m1 - m2| (r)
(r1 - r)1/2

by applying Lemma 3.2, the L'Hospital rule, and
Lemma 3.6,

lim
r\rightarrow r - 1

| m1  - m2| (r)
(r1  - r)1/2

(3.41)

= lim
r\rightarrow r - 1

m1(r) - \scrJ 
(r1  - r)1/2

 - lim
r\rightarrow r - 1

m2(r) - \scrJ 
(r1  - r)1/2

= 2 lim
r\rightarrow r - 1

(r1  - r)1/2(m2)r(r) - 2 lim
r\rightarrow r - 1

(r1  - r)1/2(m1)r(r)
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7756 JIANING XU, MING MEI, AND SHINYA NISHIBATA

=\scrJ 

\Biggl( \sqrt{} 
1

r1

\int r1

r0

\biggl( 
B1  - m1 +

1

\tau 

\biggr) 
dr - 

\sqrt{} 
1

r1

\int r1

r0

\biggl( 
B2  - m2 +

1

\tau 

\biggr) 
dr

\Biggr) 

=
\scrJ 
r1

\int r1
r0

(B1  - B2)(r)dr - 
\int r1
r0

(m1  - m2)(r)dr\sqrt{} 
1

r1

\int r1

r0

\biggl( 
B1  - m1 +

1

\tau 

\biggr) 
dr+

\sqrt{} 
1

r1

\int r1

r0

\biggl( 
B2  - m2 +

1

\tau 

\biggr) 
dr

\leq \scrJ 
r1

\int r1
r0

(B1  - B2)(r)dr\sqrt{} 
1

r1

\int r1

r0

\biggl( 
B1  - m1 +

1

\tau 

\biggr) 
dr+

\sqrt{} 
1

r1

\int r1

r0

\biggl( 
B2  - m2 +

1

\tau 

\biggr) 
dr

\leq C2\| B1  - B2\| C([r0,r1]).

Note that the constantM in (3.40) is arbitrary, we chooseM = 2C2, which contradicts
(3.41).

It then follows from (3.38) and (3.39) that

(r1  - r)1/2| (m1  - m2)r| (r)<C\| B1  - B2\| C([r0,r1]), r \in (r1  - \delta 2, r1].(3.42)

Recalling the process of calculating | I2| , we have

| \~E1  - \~E2| (r)<C

\biggl( 
\| B1  - B2\| C([r0,r1]) +

| m1  - m2| (\eta )
(r1  - \eta )1/2

\biggr) 
, \eta \in [r, r1],(3.43)

\leq C\| B1  - B2\| C([r0,r1]), r \in (r1  - \delta 2, r1].

Besides, by (3.25), (3.39), and (3.43), one has

| ( \~E1  - \~E2)r| (r)\leq 
1

r
| \~E1  - \~E2| (r) +

1

r
| m1  - m2| (r) +

1

r
| B1  - B2| (r)(3.44)

<C\| B1  - B2\| C([r0,r1]), r \in (r1  - \delta 2, r1].

Hence, (3.39) together with (3.42)--(3.44) implies the desired estimate (3.31).

Finally, we establish the structural stability estimate of interior subsonic solutions
on the middle domain. Until now, we have established the structural stability estimate
of solutions on an intrinsic small domain [r0, r0 + \delta 1) and the weighed structural
stability estimate of solutions on an intrinsic small domain (r1 - \delta 2, r1]. These ensure
us to establish the structural stability estimate of solutions on a certain domain [r0+
\delta 0, r1  - \delta 0], where \delta 0 =min\{ \delta 1, \delta 2\} .

Lemma 3.8. Let all assumptions in Theorem 3.1 hold, and let B1(r) \geq B2(r)
on [r0, r1]. Let us take \delta 0 = min\{ \delta 1, \delta 2\} , then there exists a positive constant C
independent of \| B1  - B2\| C([r0,r1]) such that

\| m1  - m2\| C1([r0+\delta 0,r1 - \delta 0]) + \| \~E1  - \~E2\| C1([r0+\delta 0,r1 - \delta 0]) <C\| B1  - B2\| C([r0,r1]).

(3.45)

Proof. From (2.2) and Lemma 3.2, we get the boundedness of m1(r) and m2(r)
on [r0 + \delta 0, r1  - \delta 0],

\scrJ <\kappa :=\scrJ + \lambda 2 sin

\biggl( 
\pi \cdot \delta 0

r1  - r0

\biggr) 
\leq m2(r)\leq m1(r)\leq B1 +

1

\tau 
.(3.46)
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Taking the difference of (3.13)| i=1 and (3.13)| i=2 and using the mean-value theorem
of differentials, we obtain

(m1  - m2)r(3.47)

=
(m1)

3

(m1)2  - \scrJ 2

\biggl( 
\~E1 +

1

r
 - \scrJ 

m1\tau 

\biggr) 
 - (m2)

3

(m2)2  - \scrJ 2

\biggl( 
\~E2 +

1

r
 - \scrJ 

m2\tau 

\biggr) 
=

(m1)
3

(m1)2  - \scrJ 2

\biggl( 
\~E1 +

1

r

\biggr) 
 - \scrJ 

\tau 

(m1)
2

(m1)2  - \scrJ 2

 - (m2)
3

(m2)2  - \scrJ 2

\biggl( 
\~E2 +

1

r

\biggr) 
+

\scrJ 
\tau 

(m2)
2

(m2)2  - \scrJ 2

=

\biggl( 
\~E1 +

1

r

\biggr) \biggl( 
(m1)

3

(m1)2  - \scrJ 2
 - (m2)

3

(m2)2  - \scrJ 2

\biggr) 
+

(m2)
3

(m2)2  - \scrJ 2
( \~E1  - \~E2)

 - \scrJ 
\tau 

\biggl( 
(m1)

2

(m1)2  - \scrJ 2
 - (m2)

2

(m2)2  - \scrJ 2

\biggr) 
=

\biggl( \biggl( 
\~E1 +

1

r

\biggr) 
g\prime 1(\zeta 1) - 

\scrJ 
\tau 
g\prime 2(\zeta 2)

\biggr) 
(m1  - m2)

+
(m2)

3

(m2)2  - \scrJ 2
( \~E1  - \~E2), \zeta 1, \zeta 2 \in (m2,m1),

where

g1(s) =
s3

s2  - \scrJ 2
, g2(s) =

s2

s2  - \scrJ 2
.

We multiply (3.47) by (m1  - m2)(r) and use (3.33), (3.46), and Cauchy's inequality
to compute that

((m1  - m2)
2)r(r)<C(m1  - m2)

2(r) +C( \~E1  - \~E2)
2(r), r \in [r0 + \delta 0, r1  - \delta 0].

(3.48)

Multiplying (3.25) by ( \~E1  - \~E2)(r) and using Cauchy's inequality, we have

(( \~E1  - \~E2)
2)r(r)<C(m1  - m2)

2(r) +C( \~E1  - \~E2)
2(r)(3.49)

+ \| B1  - B2\| 2C([r0,r1])
, r \in [r0 + \delta 0, r1  - \delta 0].

Adding (3.49) to (3.48) yields

((m1  - m2)
2 + ( \~E1  - \~E2)

2)r(r)(3.50)

<C((m1  - m2)
2 + ( \~E1  - \~E2)

2)(r)

+ \| B1  - B2\| 2C([r0,r1])
, r \in [r0 + \delta 0, r1  - \delta 0],

then we get

((m1  - m2)
2 + ( \~E1  - \~E2)

2)(r)(3.51)

<C((m1  - m2)
2 + ( \~E1  - \~E2)

2)(r0 + \delta 0)

+C\| B1  - B2\| 2C([r0,r1])
, r \in [r0 + \delta 0, r1  - \delta 0].

Since \delta 0 = min\{ \delta 1, \delta 2\} and the functions (m1  - m2, \~E1  - \~E2) are continuous at r =
r0 + \delta 1, we can derive from Lemma 3.4 that

((m1  - m2)
2 + ( \~E1  - \~E2)

2)(r0 + \delta 0)\leq C\| B1  - B2\| 2C([r0,r1])
,(3.52)
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7758 JIANING XU, MING MEI, AND SHINYA NISHIBATA

which in combination with (3.51) leads to

| m1  - m2| (r) + | \~E1  - \~E2| (r)<C\| B1  - B2\| C([r0,r1]), r \in [r0 + \delta 0, r1  - \delta 0].(3.53)

From (3.25), (3.47), and (3.53), it is easy to see that

| (m1  - m2)r| (r) + | ( \~E1  - \~E2)r| (r)<C\| B1  - B2\| C([r0,r1]), r \in [r0 + \delta 0, r1  - \delta 0].

(3.54)

Hence, (3.53)--(3.54) imply the desired estimate (3.45).

Now we prove the estimates (3.33) and (3.34) in the following Lemma.

Lemma 3.9. Let all assumptions in Theorem 3.1 be satisfied, and let B1(r) \geq 
B2(r) on [r0, r1]. Then,

| \~Ei(r)| <C(B1 + 1/\tau ), r \in [r0, r1], i= 1,2,(3.55)

| \~E1(r1) - \~E2(r1)| <C\| B1  - B2\| C([r0,r1]),(3.56)

where C is a positive constant independent of \| B1  - B2\| C([r0,r1]).

Proof. By (3.23) and (3.12), we obtain, for i= 1,2,

| \~Ei(r)| \leq 
\bigm| \bigm| \bigm| \bigm| 1\tau  - 1

r0

\bigm| \bigm| \bigm| \bigm| + 1

r0

\int r1

r0

(mi +Bi)(s)ds(3.57)

<C(B1 + 1/\tau ), r \in [r0, r1].

Taking r= r1 in (3.23) yields

\~Ei(r1) =
r0
r1

\biggl( 
1

\tau 
 - 1

r0

\biggr) 
+

1

r1

\int r1

r0

(mi  - Bi)(s)ds,(3.58)

then, by the mean-value theorem of integrals, we have

| \~E1(r1) - \~E2(r1)| =
1

r1

\bigm| \bigm| \bigm| \bigm| \int r1

r0

(m1  - m2)(s)ds - 
\int r1

r0

(B1  - B2)(s)ds

\bigm| \bigm| \bigm| \bigm| (3.59)

\leq 1

r1

\int r1

r0

| m1  - m2| (s)ds+C\| B1  - B2\| C([r0,r1])

\leq C| m1  - m2| (\theta ) +C\| B1  - B2\| C([r0,r1]), \theta \in [r0, r1].

It follows from (3.22), (3.39), and (3.53) that there exits a positive constant C inde-
pendent of \| B1  - B2\| C([r0,r1]) such that

| m1  - m2| (\theta )<C\| B1  - B2\| C([r0,r1]),(3.60)

wherever the point \theta is located in the whole domain [r0, r1]. Thus, (3.59) and (3.60)
imply (3.56).

Based on Lemmas 3.4, 3.7, and 3.8, we can derive the following proposition.

Proposition 3.10. Suppose that the conditions in Theorem 3.1 hold, and let
B1(r) \geq B2(r) on [r0, r1]. Then, the interior subsonic solutions (mi, \~Ei)(r) to (3.1)
are structurally stable in the sense that

\| m1  - m2\| C([r0,r1]) + \| (r1  - r)1/2(m1  - m2)r\| C([r0,r1])

+ \| \~E1  - \~E2\| C1([r0,r1]) <C\| B1  - B2\| C([r0,r1]),

where C is a positive constant independent of \| B1  - B2\| C([r0,r1]).
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Proof of Theorem 3.1. Let \=B(r) = max\{ B1(r),B2(r)\} and ( \=m(r), \=E(r)) be the
corresponding solution to the problem (3.1). Then the comparison principle shows,
for any r \in [r0, r1],

m1(r)\leq \=m(r), m2(r)\leq \=m(r).

Thanks to Proposition 3.10, we have

\| m1  - m2\| C([r0,r1]) + \| (r1  - r)1/2(m1  - m2)r\| C([r0,r1]) + \| \~E1  - \~E2\| C1([r0,r1])

\leq \| m1  - \=m\| C([r0,r1]) + \| (r1  - r)1/2(m1  - \=m)r\| C([r0,r1]) + \| \~E1  - \=E\| C1([r0,r1])

+ \| \=m - m2\| C([r0,r1]) + \| (r1  - r)1/2( \=m - m2)r\| C([r0,r1]) + \| \=E  - \~E2\| C1([r0,r1])

<C\| \=B  - B1\| C([r0,r1]) + \| \=B  - B2\| C([r0,r1])

=C\| B1  - B2\| C([r0,r1]).

The proof of Theorem 3.1 is complete.

Next, we state the structural stability of interior subsonic solutions to the system
(1.10) in the 3-D case. Analogously to Theorem 3.1, and in a similar manner, we
can obtain the same result about the interior subsonic solutions (mi, \~Ei)(r) to the
following system:\left\{         

\biggl( 
1 - \scrJ 2

(mi)2

\biggr) 
(mi)r =mi

\biggl( 
\~Ei +

2

r

\biggr) 
 - \scrJ 

\tau 
,

(r2 \~Ei)r =mi  - Bi(r), r \in (r0, r1), i= 1,2,

mi(r0) =mi(r1) =\scrJ .

(3.61)

Theorem 3.11. For i= 1,2, let doping profiles Bi(r)\in C
\bigl( 
[r0, r1]

\bigr) 
, \scrJ +2<Bi \leq 

Bi(r)\leq Bi on [r0, r1], and \tau satisfy

0< \tau <min

\biggl\{ 
 - r0 + r0

\sqrt{} 
1 + (B1(r0) - \scrJ  - 2)/8

B1(r0) - \scrJ  - 2
,(3.62)

 - r0 + r0
\sqrt{} 
1 + (B2(r0) - \scrJ  - 2)/8

B2(r0) - \scrJ  - 2
,
r0
2

\biggr\} 
.

Then, the interior subsonic solutions (mi, \~Ei)(r) to (3.61) relative to doping profiles
Bi(r) are structurally stable in the sense that

\| m1  - m2\| C([r0,r1]) + \| (r1  - r)1/2(m1  - m2)r\| C([r0,r1])(3.63)

+ \| \~E1  - \~E2\| C1([r0,r1]) <C\| B1  - B2\| C([r0,r1]),

where C > 0 is a constant independent of \| B1  - B2\| C([r0,r1]).

Here we only point out the differences with Lemmas 3.3 and 3.6, by the alike
processes as that in Lemmas 3.3 and 3.6, we can get the following lemma.

Lemma 3.12. For i= 1,2, suppose that doping profiles Bi(r) and \tau satisfy condi-
tions in Theorem 3.11. Then,
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lim
r\rightarrow r+0

(mi)r(r) =
\scrJ 
4

\Biggl( 
1

\tau 
 - 

\sqrt{} 
1

\tau 2
 - 8

r20\tau 
((Bi(r0) - \scrJ  - 2)\tau + 2r0)

\Biggr) 
> 0,(3.64)

lim
r\rightarrow r - 1

(r1  - r)1/2(mi)r(r) = - \scrJ 
2r1

\sqrt{} \int r1

r0

\biggl( 
Bi  - mi  - 2 +

r1 + r0
\tau 

\biggr) 
(s)ds < 0.(3.65)

Proof of Theorem 2.3. Combining Theorems 3.1 and 3.11, we can immediately
obtain Theorem 2.3.
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