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Abstract
This paper is concerned with the critical sharp travelling wave for doubly non-
linear diffusion equation with time delay, where the doubly nonlinear degener-
ate diffusion is defined by (|(um)x|p−2(um)x)x with m > 0 and p > 1. The doubly
nonlinear diffusion equation is proved to admit a unique sharp type travel-
ling wave for the degenerate case m(p− 1) > 1, the so-called slow-diffusion
case. This sharp travelling wave associated with the minimal wave speed
c∗(m, p, r) is monotonically increasing, where the minimal wave speed satisfies
c∗(m, p, r) < c∗(m, p, 0) for any time delay r > 0. The sharp front is C1-smooth
for 1

p−1 < m < p
p−1 , and piecewise smooth for m � p

p−1 . Our results indicate
that time delay slows down the minimal travelling wave speed for the doubly
nonlinear degenerate diffusion equations. The approach adopted for proof is the
phase transform method combining the variational method. The main technical
issue for the proof is to overcome the obstacle caused by the doubly nonlinear
degenerate diffusion.
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1. Introduction

This is a continuation of our recent study [46] on critical travelling waves for time-delayed
degenerate diffusion equation. Our purpose in the present paper is to study the existence,
uniqueness and regularity of the critical sharp travelling wave for the following doubly
nonlinear diffusion equation with time delay

∂u
∂t

=
(
|(um)x|p−2(um)x

)
x
− d(u) + b(u(t − r, x)), x ∈ R, t > 0, (1.1)

where p > 1, m > 0, u is the population density, b(u(t − r, x)) is the birth function, r � 0 is the

time delay, and d(u) is the death rate function. The differential operator
(
|(um)x|p−2(um)x

)
x

is

called ‘doubly nonlinear’ or non-Newtonian polytropic filtration, see [2, 19] for example. The
porous medium equation (m > 1 and p = 2) and the p-Laplacian equation (m = 1 and p > 2)
are two prototypical degenerate diffusion equations. Here the doubly nonlinear diffusion
(|(um)x|p−2(um)x)x has double degeneracy for m > 1 and p > 2, it degenerates at where u = 0
or ux = 0. While for other cases with m(p− 1) > 1 it degenerates ‘singly’. We focus on the
slow diffusion case m(p− 1) > 1 such that sharp type (with semi-compact supports) travelling
wave exists and the initial perturbation propagates at finite speed for the non-delayed case. The
functions d(s) and b(s) satisfy the following conditions:

(H1) Two constant equilibria: u− = 0 and u+ > 0 such that d(0) = b(0) = 0, d(u+) = b(u+),
b′(0) > d′(0) � 0, and d′(u+) > b′(u+) � 0;

(H2) Monotonicity: d(·), b(·) ∈ C2([0, u+]), and b′(s) > 0, d′(s) > 0 for s ∈ (0, u+).

The assumptions (H1)–(H2) are summarized from a large number of evolution equations
in ecology, such as the classical Fisher–KPP equation [13]; the well-studied Nicholson’s
blowflies equation [15] with the death function d1(u) = δu or d2(u) = δu2, the birth function

b1(u) = pue−auq
, p > 0, q > 0, a > 0;

and the Mackey–Glass equation [24] with the growth function

b2(u) =
pu

1 + auq
p > 0, q > 0, a > 0.

In the linear diffusion case (p = 2, m = 1), the situation is well understood. Reaction dif-
fusion equations with time delay has been studied by Schaaf in [36], where the existence
of monotone travelling waves is proved based on the sub- and super-solutions method and
phase plane techniques. Since then, the study of travelling wave solutions for reaction diffu-
sion equations with time delay has drawn considerable attentions (see, for example, [10, 12,
14, 23, 26] and references therein). Note that, the results mentioned above are all for the case
that the diffusion term is the classical Laplacian. In the case of degenerate porous medium
diffusion, i.e. when p = 2 and m > 1, the situation is more complicated. Here, the important
feature of degenerate diffusion equation appears: travelling waves exhibit free boundaries. In
[46], we found the sharp type travelling wave (with semi-compact supports) corresponding to
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the critical wave speed and obtained the uniqueness of these waves. Further, we proved that the
initial perturbation propagates asymptotically at the same speed [48] and later sharp-oscillatory
non-monotone travelling waves were found in [47].

Nonlinear diffusion induced by the dependency on population density and gradient accounts
for the appearance of clusters and cohesive swarms [11, 43] and the anticongestion effect
[1, 16, 44]. Dispersal mechanism involves highly the nonlinear interactions between individu-
als. Classically, the presence of an external gradient (food or taxis stimulus) may underlie the
formation of spatial aggregation of animals. This is the case in models for chemotactic bacte-
ria [20]. It does not seem, however, to be true for various species, which can continue to move
as a coherent swarm in the absence of food or external taxis stimulus and the only possible
stimulus is the heterogeneity of the density of conspecifics [11]. We will particularly focus
this paper on the doubly nonlinear degenerate diffusion of species dispersal. This generalized
nonlinearity depends on population density and gradient, and the only possible stimulus is the
population density itself, which accounts for self-organization of individuals to avoid over-
crowding from higher to lower densities [8, 16, 43]. Ecological examples have been observed
in arctic ground squirrels [9] and butterfly metapopulations [32] for positive density depen-
dent diffusion, and in various fish and insects aggregation [21, 22, 43] for gradient dependent
diffusion.

Compared with the conventional reaction diffusion models with random diffusion, the
degenerate doubly nonlinear diffusion mechanism gives a realistic representation of a moving
cohesive swarm of individuals with a uniform interior density and sharp edges, as observed in
fish schools [7], birds flocks [29] and skeletal cell spreading [37, 38]. Our result asserts that, by
the combination of density and gradient dependent dispersal processes, distribution of popula-
tions forms a sharp travelling wave pattern. Notably, linear diffusion equations and degenerate
doubly nonlinear diffusion equations show distinct behaviours, with the degenerate diffusion
in our model displaying a sharp migration front and the standard linear diffusion equation
behaving smooth front. Our sharp travelling waves solutions exhibits phenomenologically self-
organization of individuals proposed in [30], where an interior region of approximately uniform
distribution, and an interface region of sharply decreasing density. These sharp travelling waves
have distinct boundaries, and the population density decreases sharply to zero at a finite point,
rather than tends to zero asymptotically.

Ecologically, spatial diffusion of age-structured species can be described by the popula-
tion density u(t, x) moves with velocity v(t, x), birth function b(u(t − r, x)) with mature time
r, and death function d(u). Then u(t, x) satisfies the following law of population balance arises
from [16]

ut + (vu)x = −d(u) + b(u(t − r, x)). (1.2)

Here, the nonzero maturation delay r > 0 represents the time required for a newborn to become
matured [15]. The diffusion velocity may depend on population density and density gradients
and such factors lead to an anti-crowding mechanism of the organisms [30, 42]. Correspond-
ingly, dispersive velocities v is related to both the density u and density gradient ux by a
power-law dependence

v = −mp−1u(m−1)(p−1)−1|ux|p−2ux. (1.3)

Combining (1.2) and (1.3), we obtain the doubly nonlinear diffusion equation (1.1) with
time delay. Such doubly nonlinear diffusion is a result of gradient perception and anti-
congestion effect [42]. For the special case p = 2, Sengers et al [37] proposed a power-law
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density-dependent diffusivity for the MG63 migration with m = 2. Sánchez-Garduño and
Maini [33] considered density-dependent diffusion in a general form (D(u)ux)x satisfies
D(0) = 0 with D(u) > 0 and modelling the distribution patterns of species such as Arctic
ground squirrels and ant-lions etc. Further, in [35], the authors obtained the travelling waves
to describe wave invasion of the population in the ecological model with density-dependent
diffusion D(u) and degenerate advection. In the case of m = 1, p > 2, Kim and Shi [21, 22]
considered fish schooling models involving the gradient dependent diffusion in the p-Laplacian
diffusion form. For the case with m(p− 1) > 1, the diffusion coefficient is a function of den-
sity u and density gradient ux . Organisms detect the surrounding density fields, disperse in the
opposite direction of density gradient and leave the regions of higher density [3, 7, 43]. Audrito
and Vázquez considered the doubly nonlinear operator and used travelling waves to explain
that the species invades all the available space with speed of propagation [2].

The sharp type (with semi-compact supports) travelling wave solutions are essential in the
analysis of the propagation properties of degenerate diffusion equations. In many cases, the
solutions with compactly-supported initial data propagate asymptotically at the same speed of
the sharp waves, which also is the minimal admissible travelling wave speed. This phenomenon
was observed by Audrito and Vázquez [2] for doubly nonlinear diffusion equation (1.1) with-
out time delay (i.e. r = 0), and further the speed was characterized via a variational approach
by Benguria and Depassier [6]. For the investigation of sharp waves related to degenerate diffu-
sion, see also in [25, 33, 34]. The role played by the degeneracy in the travelling wave dynamics
of diffusion equations with advection was studied in [35].

Due to the complicated structure of doubly nonlinear operator, in the case p > 1 and m > 0,
the problem possesses some intrinsic difficulties. Our main objective is to investigate the
structure of the critical sharp waves and to estimate the corresponding critical speed using
the approach of phase transform method with the help of the variational approach developed
recently in our studies [45, 46]. Precisely speaking, we prove that, the doubly nonlinear dif-
fusion equation (1.1) possesses a unique sharp type travelling wave φ(x + c∗t) (defined in
definition 2.1) for the degenerate case m(p− 1) > 1, and such a sharp travelling wave asso-
ciated with the minimal wave speed c∗ = c∗(m, p, r) is monotonically increasing, where the
minimal wave speed satisfies c∗(m, p, r) < c∗(m, p, 0) for any time delay r > 0. Furthermore,
we show the optimal regularity of the sharp front φ(x + c∗t). That is, when p−1

m(p−1)−1 is inte-

ger, then the sharp front φ(x + c∗t) is C
p−1

m(p−1)−1−1-smooth with φ and all its derivatives ∂ jφ are
Lipschitz continuous for j = 1, . . . , p−1

m(p−1)−1 − 1; while, when p−1
m(p−1)−1 is non-integer, then the

sharp front φ(x + c∗t) is C[ p−1
m(p−1)−1 ]-smooth, where [ p−1

m(p−1)−1 ] denotes the largest integer which

is less then p−1
m(p−1)−1 , in particular, φ and all its derivatives ∂ jφ for j = 1, . . . , [ p−1

m(p−1)−1 ] are

Cαm,p Hölder continuous with the Hölder exponent αm,p =
p−1

m(p−1)−1 − [ p−1
m(p−1)−1]. This implies

that the sharp front φ(x + c∗t) is C1-smooth for 1
p−1 < m < p

p−1 , and piecewise smooth for
m � p

p−1 . On the other hand, we also prove that the time delay r > 0 slows down the minimal
travelling wave speed c∗ = c∗(m, p, r) for the doubly nonlinear degenerate diffusion equations.
Finally, let us point out a slightly unexpected phenomenon related to the doubly nonlinear oper-
ator. The main difficulty lies in the asymptotic behaviour of the phase function ψ̃(φ) defined for
the sharp type travelling wave φ(ξ) by regarding ψ(ξ) := |(φm(ξ))′|p−2(φm(ξ))′ as a function of
φ. Its asymptotic behaviour near the positive equilibrium u+ for the degenerate case p ∈ (1, 2)
is quite different from the case p = 2.

The paper is organized as follows. The main results are stated in section 2 and all the proofs
are presented in section 3. Section 4 is a brief derivation of the models with density and gradient
dependent diffusion.
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2. Main results

We consider the doubly nonlinear degenerate diffusion equation with time delay (1.1). We are
looking for the travelling wave solutions of sharp type that connect the two equilibria u− = 0
and u+=: K. Under the hypotheses (H1)–(H2), the birth function b(u) is monotonically increas-
ing on [u−, u+]=: [0, K]. Let φ(ξ), where ξ = x + ct and c > 0, be the travelling wave solution
of (1.1), we get (we write ξ as t for the sake of simplicity)

{
cφ′(t) = (|(φm)′(t)|p−2(φm)′(t))′ − d(φ(t)) + b(φ(t − cr)), t ∈ R,

φ(−∞) = 0, φ(+∞) = K.
(2.1)

Since (2.1) has singularity or degeneracy, we employ the following definition of sharp and
smooth travelling waves. Here are some notations used throughout this paper: L1

loc(R) is the set
of locally Lebesgue integrable functions,

Cb
unif(R) := {φ ∈ C(R) ∩ L∞(R);φ is uniformly continuous onR},

C(R) := {φ ∈ C(R) ∩ L∞(R); lim
t→+∞

φ(t) and lim
t→−∞

φ(t) exist},

and

W1,p
loc (R) := {φ;φ ∈ W1,p(Ω) for any compact subsetΩ ⊂ R}.

It is clear that C(R) ⊂ Cb
unif(R) ⊂ C(R) ∩ L∞(R). The function spaces Ck(R) are defined

similarly for any positive integer k.

Definition 2.1. A profile function φ(t) is said to be a travelling wave solution of (2.1) if φ ∈
Cb

unif(R), 0 � φ(t) � K := u+, φ(−∞) = 0, φ(+∞) = K, φm ∈ W1,p
loc (R), φ(t) satisfies (2.1) in

the sense of distributions. The travelling wave φ(t) is said to be of sharp type if the support
of φ(t) is semi-compact, i.e. suppφ = [t0,+∞) for some t0 ∈ R, φ(t) > 0 for t > t0. On the
contrary, the travelling wave φ(t) is said to be of smooth type if φ(t) > 0 for all t ∈ R.

Without loss of generality, we may always shift t0 to 0 for the sharp type travelling wave.
Therefore, a sharp type travelling wave φ(t) is a special solution such that φ(t) = 0 for t � 0,
and φ(t) > 0 for t > 0.

Special notations should be addressed here about the definition of sharp type travelling
waves in the sense of distributions. The profile function φ(t) has the following expansion near
0 (see lemma 3.1)

φ(t) =

⎧⎪⎪⎨
⎪⎪⎩
(

c
1

p−1 (m(p− 1) − 1)
m(p− 1)

) p−1
m(p−1)−1

· t
p−1

m(p−1)−1 + o
(

t
p−1

m(p−1)−1

)
, t → 0+,

0, t � 0,

(2.2)
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such that

(φm(t))′ =

⎧⎪⎨
⎪⎩c

m
m(p−1)−1

(
(m(p− 1) − 1)

m(p− 1)

) 1
m(p−1)−1

· t
1

m(p−1)−1 + o
(

t
1

m(p−1)−1

)
, t → 0+,

0, t � 0,

and

(|(φm(t))′|p−2(φm(t))′)′

=

⎧⎪⎪⎨
⎪⎪⎩

c
m(p−1)

m(p−1)−1

(
(m(p− 1) − 1)

m(p− 1)

) p−1
m(p−1)−1 p− 1

(m(p− 1) − 1)
· t

p−m(p−1)
m(p−1)−1 + o

(
t

p−m(p−1)
m(p−1)−1

)
, t → 0+,

0, t � 0.

The derivatives (φm(t))′, (|(φm(t))′|p−2(φm(t))′)′, andφ′(t) belong to L1
loc(R) and are defined in

the sense of distributions. Moreover, the derivative φ′′(t) is not in L1
loc(R) for the case m � p

p−1 .

In fact, for the special case m = p
p−1 , φ′′(t) is the summation of a multiple of Dirac measure and

a function in L1
loc(R); while for m > p

p−1 , φ′′(t) is more singular in the sense of distributions and

can not be understood as a point-wise function. The doubly nonlinear term |(um)x|p−2(um)x is
well defined for p > 1 provided that (um)x is well defined, though |(um)x|p−2 may blow up for
1 < p < 2 and (um)x approaches zero. Here the solution is defined in the sense of distributions,
i.e. |(um)x| ∈ Lp

loc is sufficient.
For any given m > 0, p > 1, such that m(p− 1) > 1, and r � 0, we define the critical (or

minimal) wave speed c∗(m, p, r) for the degenerate diffusion equation (2.1) as follows

c∗(m, p, r) := inf{c > 0; (2.1) admits increasing travelling waves with speed c}.
(2.3)

For the case without time delay and with degenerate diffusion (i.e. m(p− 1) > 1 and r = 0),
it is proved by Benguria and Depassier in [6] that

c∗(m, p, 0) = sup
g∈D

∫ K

0

p
(p− 1)(p−1)/p

(−g′(φ))
1
p (g(φ))

p−1
p

× (mφm−1(b(φ) − d(φ)))
p−1

p dφ, (2.4)

where D = {g ∈ C1([0, K]);
∫ K

0 g(s)ds = 1, g(s) > 0, g′(s) < 0, ∀s ∈ (0, K)}.
Before stating the main results, we present an outline of the contents of this paper. Taking

the non-delayed doubly nonlinear diffusion equation for example, i.e. (1.1) with r = 0, it is
shown by Audrito and Vázquez [2] that:

(a) There exists a critical speed c∗ = c∗(m, p, 0) > 0 such that (1.1) with r = 0 admits
travelling waves for and only for the speed c � c∗;

(b) The travelling wave φ(t) corresponding to speed c > c∗ is smooth (positive for all t ∈ R);
(c) The travelling wave φ(t) corresponding to speed c = c∗ is sharp (positive for t > t0 for

some t0);
(d) The critical speed c∗ is the asymptotic propagation speed.
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The above properties show that the sharp travelling wave and the corresponding critical
speed are essential for dynamics of degenerate diffusion equations. Here for time delayed case,
we focus on the sharp travelling wave and reveal the role played by the time delay. Specifically,
we prove that:

(a) (2.1) admits a unique sharp type travelling wave, and the sharp travelling wave is
monotonically increasing;

(b) The sharp travelling wave corresponds to the minimal (critical) wave speed c∗(m, p, r);
(c) c∗(m, p, r) < c∗(m, p, 0) for any time delay r > 0;
(d) The regularity of sharp waves weakens as m − 1

p−1 increases.

As a consequence, the time delay slows down the minimal travelling wave speed for the
doubly nonlinear degenerate diffusion equations.

Our main results are as follows.

Theorem 2.1 (Critical sharp travelling wave). Assume that d(s) and b(s) satisfy
(H1)–(H2), and m > 0, p > 1, r � 0, such that m(p− 1) > 1. Then the critical wave speed
c∗ = c∗(m, p, r) defined in (2.3) is positive and satisfies c∗(m, p, r) < c∗(m, p, 0) for any time
delay r > 0, such that (2.1) admits a unique (up to shift) sharp travelling wave φ(x + c∗t)
with speed c∗, which is the critical travelling wave of (2.1) and is monotonically increas-
ing. Moreover, any other travelling wave solution must be smooth and correspond to speed
c > c∗(m, p, r).

Theorem 2.2 (Regularity of sharp wave). Assume that the conditions in theorem 2.1
hold. Let γm,p be the largest integer that is smaller than p−1

m(p−1)−1 , i.e.

γm,p :=

⎧⎪⎪⎨
⎪⎪⎩

p− 1
m(p− 1) − 1

− 1, if
p− 1

m(p− 1) − 1
is an integer,[

p− 1
m(p− 1) − 1

]
, if

p− 1
m(p− 1) − 1

is not an integer,

and denote αm,p := p−1
m(p−1)−1 − γm,p ∈ (0, 1]. Then the optimal regularity of sharp wave φ(ξ) is

φ ∈ Cγm,p,αm,p(R), where Cγm,p,αm,p(R) is the function space defined as: if p−1
m(p−1)−1 is an integer,

then αm,p = 1, and

Cγm,p,1(R) :=

{
φ ∈ Cγm,p(R)

∣∣∣∣∂ jφ, for j = 0, 1, . . . ,
p− 1

m(p− 1) − 1
− 1,

× are Lipschitz continuous

}
; (2.5)

while if p−1
m(p−1)−1 is not an integer, then 0 < αm,p < 1, and

Cγm,p,αm,p(R) :=

{
φ ∈ Cγm,p(R)

∣∣ ∂ jφ, for j = 0, 1, . . . ,

[
p− 1

m(p− 1) − 1

]
,

× are Cαm,p Hölder continuous} . (2.6)

Remark 2.1. If m � p
p−1 , then the sharp travelling wave is not C1 smooth; while if m ∈

( 1
p−1 , p

p−1 ), then the sharp travelling wave is C1 smooth. See figure 1.
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Figure 1. Travelling waves: (a) non-C1 sharp type for m � p
p−1 ; (b) C1 sharp type for

m ∈ ( 1
p−1 , p

p−1 ).

The idea of the proof is the following. The sharp travelling wave φ(t) is a special solution
of (2.1) satisfying:

(a) The support of φ(t) is [0,+∞);
(b) φ(t) is monotone increasing and φ(+∞) = K, i.e. φ(t) grows up to K as t →+∞;
(c) The speed c is a special one, actually, c = c∗(m, p, r), which is the unique critical wave

speed.

We note that the parameter c in property (c) and also in the equation (2.1) is not a priori
known. Meanwhile the property (a) says the local behaviour ofφ(t) near the edge of the support,
and the property (b) tells us the global behaviour.

It seems impossible for us to find the sharp travelling wave satisfying all these properties in
a single step. To overcome the difficulties, we observe that the precise support of sharp wave
and the time-delayed structure of differential equation (2.1) make it possible to construct local
solutions with undetermined speed step by step, and then we compare those local solutions
with different speeds via a generalized phase plane analysis method. In other word, we solve
the local solution of (2.1) with property (a) and undetermined speed c, then we adjust the speed
c such that the local solution satisfies the global property (b), hence we find the sharp travelling
wave with critical speed c∗(m, p, r).

3. Proof of the main results

For any given m > 0, p > 1, and r > 0, such that m(p− 1) > 1, we solve (2.1) locally for any
c > 0 and then we single out a special solution that is a sharp travelling wave with critical wave
speed. First, noticing that the sharp wave solution φ(t) = 0 for t � 0 and then φ(t − cr) = 0
for t ∈ [0, cr), (2.1) is locally reduced to{

cφ′(t) = (|(φm(t))′|p−2(φm(t))′)′ − d(φ(t)),

φ(0) = 0, (φm)′(0) = 0, t ∈ (0, cr).
(3.1)

The problem (3.1) is a second-order equation with initial value φm(0) = 0 and (φm)′(0) = 0.
However, singularity arises and φm(t) ≡ 0 is not the unique solution. To see this more clearly,
we set ζ(t) = φm(t) and rewrite (3.1) as

|ζ ′(t)|p−2ζ ′(t) = cζ
1
m (t) +

∫ t

0
d
(
ζ

1
m (s)

)
ds,
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which is

ζ ′(t) =

(
cζ

1
m (t) +

∫ t

0
d
(
ζ

1
m (s)

)
ds

) 1
p−1

≈ c
1

p−1 ζ
1

m(p−1) (t).

The following prototypical problem⎧⎨
⎩
ζ ′(t) = c

1
p−1 ζ

1
m(p−1) (t), t > 0,

ζ(0) = 0,
(3.2)

has infinitely many solutions since m(p− 1) > 1 and ζ
1

m(p−1) is not Lipschitz continuous with
respect to ζ . Actually, for any τ � 0,

ζτ (t) :=

⎧⎪⎪⎨
⎪⎪⎩
(

c
1

p−1 (m(p− 1) − 1)
m(p− 1)

) p−1
m(p−1)−1

· (t − τ )
m(p−1)

m(p−1)−1 , t > τ ,

0, t � τ ,

is a solution to (3.2), and ζ0(t) is the maximal one and also the unique one such that ζ0(t) > 0
for t > 0. The problem (3.1) behaves similarly as (3.2), such that its solutions are not unique
and we choose the maximal one satisfying φ(t) > 0 for t ∈ (0, cr) as shown in lemma 3.1.
Here, (φm)′(0+) = 0 is a necessary and sufficient condition such that the zero extension of φ(t)
to the left satisfies (2.1) locally near 0 in the sense of distributions. In fact, if (φm)′(0+) > 0,
then the generalized derivative (|(φm(t))′|p−2(φm(t))′)′ of the zero extension is not a locally
integrable function. Specifically, (|(φm(t))′|p−2(φm(t))′)′ is a locally integrable function added
by a multiple of Dirac measure and the differential equation (2.1) cannot be valid in the sense
of distributions.

The proof follows from the similar outline as in [46], the difference lies in the asymptotic
behaviour ofψ(t) := |(φm(t))′|p−2(φm(t))′ in the singular phase plane of (φ,ψ) for the sharp wave
solution φ(t). Here we mainly sketch the proofs that have differences for the sake of simplicity.

Lemma 3.1. For any c > 0, the degenerate ODE (3.1) admits a unique maximal solution
φ1

c(t) on (0, cr) such that φ1
c(t) > 0 and (φ1

c)′(t) > 0 on (0, cr) and

φ(t) =

(
c

1
p−1 (m(p− 1) − 1)

m(p− 1)

) p−1
m(p−1)−1

· t
p−1

m(p−1)−1 + o
(

t
p−1

m(p−1)−1

)
, as t → 0+.

(3.3)

Proof. A positive solution φ(t) > 0 on (0, cr) with locally φ′(t) > 0 near 0 to the degenerate
ODE (3.1) satisfies the following singular differential system on (0, cr)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
φ′(t) =

ψ
1

p−1 (t)
mφm−1(t)

,

ψ′(t) = c
ψ

1
p−1 (t)

mφm−1(t)
+ d(φ(t)),

(3.4)

withψ(t) := |(φm(t))′|p−2(φm(t))′. We seek for a solution to (3.4) such that φ(t) > 0 andψ(t) > 0
for t ∈ (0, cr) with ψ(0) = 0 and φ(0) = 0. If this kind of solution exists, then it is a solution to
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(3.1). The system (3.4) has singularity at some points where φ(t) = 0. For functions φ(t) > 0
on (0, cr) such that 1

mφm−1(t)
is integrable, we make change of variables such that

ds
dt

=
1

mφm−1(t)
, s = 0 for t = 0;

while for functions φ(t) > 0 on (0, cr) such that 1
mφm−1(t) is not integrable, we make change of

variables as

ds
dt

=
1

mφm−1(t)
, s = 0 for t = cr, s = −∞ for t = 0.

The system (3.4) is autonomous and the change of variable does not affect the shape of
trajectories. Then system (3.4) is converted to

⎧⎪⎨
⎪⎩

dφ
ds

= ψ
1

p−1 (t(s)),

dψ
ds

= cψ
1

p−1 (t(s)) + mφm−1(t(s)) · d(φ(t(s))).
(3.5)

The behaviour of trajectories for (3.5) is not clear forψ near zero. Therefore, we solve (3.5) with
the condition (φε(0),ψε(0)) = (0, ε), i.e. we consider the trajectory (φε(t(s)),ψε(t(s))) passing
through (0, ε) for t → 0+ (for s → 0+ or for s →−∞ depending on the integrability of 1

mφm−1(t)
)

in the phase plane (3.5).
Locally ψε(t) > 0 and then φ′

ε(t) > 0, we can make change of variables such that we take
φε as an independent variable and regard ψε as a function of φε, denoted by ψ̃ε(φ). Then we
have ⎧⎪⎨

⎪⎩
dψ̃ε

dφ
= c +

mφm−1d(φ)

ψ̃
1

p−1
ε

, φ > 0,

ψ̃ε(0) = ε.

(3.6)

The initial value problem (3.6) has a unique solution since ψ̃ε(φ) � ε and the right-hand side
function is Lipschitz continuous with respect to both φ and ψ̃ε. The monotone dependence and
the continuous dependence of ψ̃ε(φ) with respect to ε follow from the classical ODE theory.
Moreover, ψ̃ε(φ) � cφ, and then

dψ̃ε

dφ
= c +

mφm−1d(φ)

ψ̃
1

p−1
ε

� c +
mφm−1d(φ)

(cφ)
1

p−1

� c +
mM

c
1

p−1
φm− 1

p−1 , φ ∈ [0, u+],

for some constant M > 0 such that d(φ) � Mφ for φ ∈ [0, u+]. Therefore,

cφ � ψ̃ε(φ) � ε+ cφ+
mM

c
1

p−1

(
m − 1

p−1

)φm− 1
p−1+1.
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The limiting function ψ̃(φ) of ψ̃ε(φ) as ε→ 0+ exists and satisfies

cφ � ψ̃(φ) � cφ+
mM

c
1

p−1

(
m − 1

p−1

)φm− 1
p−1+1, φ ∈ [0, u+]. (3.7)

Since (0, 0) is the unique stationary point in {(φ,ψ); φ < u+} at the phase plane of (3.5), no
trajectories intersect with each other at points except (0, 0). Noticing that ψ̃(φ) is the limiting
function of ψ̃ε(φ) corresponding to trajectories passing through (0, ε), we see that ψ̃(φ) is the
maximal (if not unique) solution such that its trajectory passes through (0, 0).

Now we show that ψ̃(φ) is the unique one such that its trajectory passes through (0, 0) into
the first quadrant. Let ψ̃i(φ), i = 1, 2, be two solutions with ψ̃1(φ0) > ψ̃2(φ0) > 0 for some
φ0 > 0. Then

d(ψ̃1 − ψ̃2)
dφ

=
mφm−1d(φ)

ψ̃
1

p−1
1

− mφm−1d(φ)

ψ̃
1

p−1
2

= −
mφm−1d(φ)

(
ψ̃

1
p−1
1 − ψ̃

1
p−1
2

)

ψ̃
1

p−1
1 ψ̃

1
p−1
2

.

It follows that ψ̃1 − ψ̃2 decreases to ψ̃1(φ0) − ψ̃2(φ0) > 0 and contradicts to
ψ̃1(0) = ψ̃2(0) = 0.

We recover (φ(t),ψ(t)) from ψ̃(φ) according to the relation

ψ(t) = |(φm(t))′|p−2(φm(t))′ = ψ̃(φ(t)).

Asymptotic analysis in (3.7) shows that (note that m(p− 1) > 1)

ψ̃(φ) = cφ+ o(φ), as φ→ 0+,

then

|(φm(t))′|p−2(φm(t))′ = ψ̃(φ(t)) = cφ(t) + o(φ(t)), as t → 0+. (3.8)

Furthermore, let φm(t) > 0 on (0, cr) with φm(0) = 0 be the maximal solution (there are
infinitely many solutions without the condition φm(t) > 0 on (0, cr)) to the following singular
first order differential equation

(φm(t))′ =
(
ψ̃(φ(t))

) 1
p−1

= c
1

p−1 (φm(t))
1

m(p−1) + o
(

(φm(t))
1

m(p−1)

)
, as t → 0+.

Therefore,

φm(t) =

(
c

1
p−1 (m(p− 1) − 1)

m(p− 1)

) m(p−1)
m(p−1)−1

· t
m(p−1)

m(p−1)−1 + o
(

t
m(p−1)

m(p−1)−1

)
, as t → 0+.

The proof of (3.3) is completed. �
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Next, let φ2
c(t) be the solution of the following initial value second order ODE problem

{
cφ′(t) = (|(φm(t))′|p−2(φm(t))′)′ − d(φ(t)) + b(φ1

c(t − cr)), t ∈ (cr, 2cr),

φ(cr) = φ1
c (cr), φ′(cr) = (φ1

c)′(cr).
(3.9)

The problem (3.9) is locally solvable and has no singularity near t = cr since φ1
c(cr) > 0.

The above steps can be continued unless φk
c(t) blows up or decays to zero in finite time for

some k ∈ N
+. Let φc(t) be the connecting function of those functions on each step, i.e.

φc(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1
c (t), t ∈ [0, cr),

φ2
c (t), t ∈ [cr, 2cr),

...

φk
c(t), t ∈ [(k − 1)cr, kcr),

...

(3.10)

for some finite steps such that φc(t) blows up or decays to zero, or for infinite steps such that
φc(t) is defined on (0,+∞) and zero extended to (−∞, 0) for convenience.

We assert that once φc(t) is decreasing then it is always decreasing after that.

Lemma 3.2. If there exists a t0 > 0 such that φ′
c(t0) < 0, then φc(t) decreases to 0 after t0.

Proof. According to lemma 3.1, φc(t) is strictly increasing on (0, cr). Let t1 ∈ [cr, t0) be the
maximal one such that φc(t) is strictly monotone increasing on (0, t1), and let t2 > t1 be the
maximal one such that φc(t) is strictly monotone decreasing on (t1, t2).

Here we would like to explain more details about the existence of a right neighbourhood
(t1, t1 + δ) with some δ > 0 such that φc(t) is strictly monotone decreasing. Generally, a func-
tion with zero derivative at t1 can oscillate on the right of t1 (see (t − t1)3 sin(1/(t − t1)) for
example) and no right neighbourhood with monotonicity exists. We argue by contradiction and
assume that no monotone right neighbourhoodofφc(t) at t1 exists. Thanks to the construction of
φc(t) in (3.1) and (3.9) such that it satisfies the differential equation (2.1) on its existence inter-
val, we find that there must hold φ′

c(t1) = 0, (φm
c )′(t1) = 0, and (|(φm

c )′(t)|p−2(φm
c )′(t))′|t=t1 = 0

(the existence is guaranteed by the equation and the equality to zero follows from the oscilla-
tions), then d(φc(t1)) = b(φc(t1 − cr)) according to (2.1). Note that φc(t) is strictly increasing
near t1 − cr since t1 − cr ∈ (0, t1) and φ′

c(t1) = 0, we show that b(φc(t − cr)) − d(φc(t)) is
strictly increasing and then positive at a right neighbourhood of t1, denoted by (t1, t1 + δ).
Therefore, within (t1, t1 + δ), φc(t) satisfies the following one-dimensional quasi-linear elliptic
problem

−(|(φm)′(t)|p−2(φm)′(t))′ + cφ′(t) = b(φ(t − cr)) − d(φ(t)) > 0, t ∈ (t1, t1 + δ). (3.11)

The positivity of the right-hand side of (3.11) implies that no inner minimum point exists in
(t1, t1 + δ) and thus no oscillations exist.

Now that we have proved the existence of a monotone right neighbourhood of φc(t)
at t1, we see that t2 exists. If t2 = +∞, which means φc(t) is decreasing on (t1,+∞),
we assert that φc(t) decreases to zero. Otherwise, the monotonicity implies that φc(t)
decreases to some point κ ∈ (0, K). The monotonicity of φc(t) also shows the existence of

3369



Nonlinearity 35 (2022) 3358 T Xu et al

lim
t→+∞

d(φ(t)) = d(κ) and lim
t→+∞

b(φ(t − cr)) = b(κ), lim
t→+∞

φ′(t) = 0, and further according to

(2.1) lim
t→+∞

(|(φm)′(t)|p−2(φm)′(t))′ exists, which must be zero if exists. Then using (2.1) again,

d(κ) = b(κ), which contradicts to the fact that no equilibrium exists in (0, K).
If t2 is finite and φc(t2) does not reach 0, then φ′

c(t1) = 0 = φ′
c(t2) and further we find that

(|(φm)′(t)|p−2(φm)′(t))′
∣∣
t=t1

� 0,

since (φm)′(t) � 0 for t < t1 and (φm)′(t) � 0 for t1 < t < t2. Therefore, the equation (2.1)
implies that

d(φ(t1)) � b(φ(t1 − cr)). (3.12)

Similarly, analysis at t2 shows that

(|(φm)′(t)|p−2(φm)′(t))′
∣∣
t=t2

� 0,

and

d(φ(t2)) � b(φ(t2 − cr)). (3.13)

Since d(s) � b(s) for s ∈ (0, K), (3.13) implies that

φ(t2 − cr) � φ(t2) < φ(t1).

Noticing that φc(t) is strictly increasing on (0, t1), and strictly decreasing on (t1, t2), there
exists a t∗ ∈ (0, t1) such that φc(t∗) = φc(t2). Therefore t2 − cr � t∗. In other words, t2 − cr and
t1 − cr both reside in (0, t∗) and then φ(t2 − cr) > φ(t1 − cr) according to the monotonicity of
φc on (0, t∗). Now we have

b(φ(t2 − cr)) > b(φ(t1 − cr)), d(φ(t2)) < d(φ(t1)),

which contradicts to (3.12) and (3.13). �

Lemma 3.3. For any given r > 0, there exist two numbers c > c > 0 such that if 0 < c � c,
then φc(t) decays to zero; if c � c, then φc(t) grows up to +∞ as t tends to +∞.

Proof. The above assertions for the special case of m > 1 and p = 2 are proved in [47]. Here
we consider the following dynamical system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
φ′(t) =

ψ
1

p−1 (t)
mφm−1(t)

,

ψ′(t) = c
ψ

1
p−1 (t)

mφm−1(t)
+ d(φ(t)) − b(φ(t − cr)),

(3.14)

with ψ(t) := |(φm(t))′|p−2(φm(t))′. For the case without time delay, i.e. r = 0, the phase plane
corresponding to (3.14) can be analysed by investigating the behaviour of the following first
order equation (especially in the first quadrant)

dψ
dφ

= c − mφm−1(b(φ) − d(φ))

ψ
1

p−1
.
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While for the time-delayed case, the pair (φ(t),ψ(t)) for any solution φ(t) still draws tra-
jectories in the phase plane of (φ,ψ). But the analysis of this phase plane is more subtle. The
trajectories may intersect with each other at non-stationary points due to the non-local property
of time delay. We would call it a generalized phase plane.

According to lemma 3.1, φc(t) is strictly increasing on (0, cr). There exists a t0 � cr such
that φc(t) is strictly monotone increasing on (0, t0), and we may take (0, t0) as the maximal one.
That is,

t0 := sup {s � cr;φc(t) is strictly increasing on (0, s)}.

For the local solution φc(t) on its strictly monotone increasing interval (0, t0), we take φc as
an independent variable and regard ψc as a function of φc, denoted by

ψ̃c(φc) = ψc(t−1(φc)), such that t−1(φc) is the inverse function ofφc(t). (3.15)

We may drop the subscripts in φc, ψc, ψ̃c, and simply write φ, ψ, ψ̃, for a given c > 0. Define

φcr := inf
θ∈[0,φ]

{∫ φ

θ

msm−1

ψ̃
1

p−1 (s)
ds � cr

}
. (3.16)

We note that
∫ φ

θ
msm−1

ψ̃
1

p−1 (s)
ds is decreasing with respect to θ ∈ (0,φ]. If

∫ φ

0
msm−1

ψ̃
1

p−1 (s)
ds � cr,

then φcr = 0; while if
∫ φ

0
msm−1

ψ̃
1

p−1 (s)
ds > cr, then φcr > 0 and φcr is the minimal one such that∫ φ

θ
msm−1

ψ̃
1

p−1 (s)
ds � cr and the unique one satisfying

∫ φ

φcr

msm−1

ψ̃
1

p−1 (s)
ds = cr. The definition of φcr

recovers φ(t − cr) from φ(t) and ψ(t). Then the function ψ̃(φ) satisfies⎧⎪⎨
⎪⎩

dψ̃
dφ

= c − mφm−1 · (b(φcr) − d(φ))

ψ̃
1

p−1 (φ)
,

ψ̃(0) = 0, ψ̃(φ) > 0 forφ ∈ (0,φ∗),

(3.17)

where φ∗ = φc(t0) and (0, t0) is the maximum interval such that φc(t) is strictly monotone
increasing.

(a) We show that φc(t) decays to zero if c is sufficiently small. Noticing that φcr < φ and b(s)
is increasing, we have

dψ̃
dφ

= c − mφm−1 · (b(φcr) − d(φ))

ψ̃
1

p−1 (φ)
> c − mφm−1 · (b(φ) − d(φ))

ψ̃
1

p−1 (φ)
=: F1(φ,ψ), (3.18)

and

dψ̃
dφ

= c − mφm−1 · (b(φcr) − d(φ))

ψ̃
1

p−1 (φ)
< c +

mφm−1 · d(φ)

ψ̃
1

p−1 (φ)
=: F2(φ,ψ). (3.19)

The analysis of trajectories corresponding to F1(φ,ψ) and F2(φ,ψ) is trivial. We see that

ψ̃(φ) � C1φ, φ ∈ (0,φ∗).
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According to the definition of φcr, we have

cr �
∫ φ

φcr

msm−1

ψ̃
1

p−1 (s)
ds

�
∫ φ

φcr

msm−1

C
1

p−1
1 s

1
p−1

ds

=
m

C
1

p−1
1

(
m − 1

p−1

)
(
φm− 1

p−1 − φ
m− 1

p−1
cr

)
. (3.20)

It follows that φcr is close to φ if cr is small. Specifically, as discussed in the proof of
lemma 4.1 in [47], we fix η = min{φ∗, u+/2} and choose ε > 0 such that∫ ε

0
sm−1d(s)ds <

1
4

∫ η

ε

sm−1(b(s) − d(s))ds,

and let δ := inf
s∈(ε,η)

(b(s) − d(s)) > 0. Assume that cr is sufficiently small such that φ � ε

implies φcr � ε/2 based on (3.20). Further, we take cr smaller if necessary such that

b(φ) − b(φcr) � δ

2
� b(φ) − d(φ)

2

for φ ∈ [ε, η] and φcr � ε/2 since φcr is close to φ. Therefore, for any φ ∈ (ε, η),

b(φcr) − d(φ) = (b(φ) − d(φ)) − (b(φ) − b(φcr)) � b(φ) − d(φ)
2

.

Integrating (3.17) (multiplied by ψ̃
1

p−1 (φ)) over (0, η) shows that

c
∫ η

0
ψ̃

1
p−1 (φ)dφ =

p− 1
p

ψ̃
p

p−1 (φ)

∣∣∣∣
η

0

+

∫ η

0
mφm−1(b(φcr) − d(φ))dφ

�
∫ ε

0
mφm−1(0 − d(φ))dφ+

∫ η

ε

mφm−1(b(φcr) − d(φ))dφ

�
(
−1

4
+

1
2

)∫ η

ε

mφm−1(b(φ) − d(φ))dφ.

Meanwhile,

c
∫ η

0
ψ̃

1
p−1 (φ)dφ � c

∫ η

0
C

1
p−1

1 φ
1

p−1 dφ.

The above two inequalities cannot be valid together if c is sufficiently small and
φ∗ � u+/2 (such that η = u+/2 in this case). That is, φc(t) cannot increase to u+/2 if c is
sufficiently small. Noticing that (0, 0) is the unique stationary point in {(φ,ψ); φ � u+/2}
on the phase plane, φc(t) cannot increase to some positive equilibrium and once φc(t)
decreases, it must decrease to zero according to lemma 3.2.

(b) Next, we show thatφc(t) grows up to+∞ if c is sufficiently large. According to the relation
(3.18), we compare the phase plane of (φ,ψ) with that corresponds to F1(φ,ψ) in (3.18),
where the latter one is a dynamical system without time delay. This is proved in lemma 3.3
of [47].
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The local solution φc(t) may grow beyond the positive equilibrium K = u+ > 0 or decay
to zero in finite interval. The sharp travelling wave is the special one (the uniqueness will
be proved) such that φc(t) exists globally and is monotone increasing on (0,+∞), together
with the speed c being identical to the critical wave speed c∗(m, p, r). The existence and other
properties of the sharp wave for the case of m > 1 and p = 2 are proved in [46, 47]. Specifically,
the existence of sharp wave in the above settings is proved in [47] by a continuation argument
for general non-monotone birth function b(s); and the uniqueness is prove in [46] via monotone
dependence of φc(t) with respect to c for monotone birth function.

Lemma 3.4. The solution φc(t) is locally continuously dependent on c and is strictly mono-
tonically increasing with respect to c on their joint existence interval. To be more precisely,
let φc1 (t) and φc2 (t) be the solutions corresponding to c1 > c2 > 0, then φc1 (t) > φc2 (t) on
(0, Tc1) ∩ (0, Tc2 ), where (0, Tci) is the maximal existence interval of φci (t).

Proof. The continuous dependence of φc(t) on c is proved in two steps. According to lemma
3.1, the locally asymptotic behaviour ofφc(t) near zero shows thatψc(t) := |(φm

c (t))′|p−2(φm
c (t))′,

denoted by ψ̃c(φc) as a function of φc, satisfies the estimates (3.7) and the following ODE

dψ̃
p

p−1
c

dφ
= c

p
p− 1

ψ̃
1

p−1
c +

p
p− 1

mφm−1d(φ), ψ̃c(0) = 0. (3.21)

The estimates (3.7) imply that ψ̃c(φ) is the maximal solution of (3.21), which is continuously
dependent on c. Therefore, for t ∈ (0, t1) with some 0 < t1 � cr/2, φc(t) is continuous with
respect to c; while for t ∈ (t1, T) with T > cr, the continuous dependence is a trivial problem
since φc(t) � φc(t1) > 0 for t1 < t < T and (2.1) is a regular delayed ODE since the dynamic
system (3.14) has no singularity as φ(t) has positive infimum.

The monotone dependence is proved via the phase plane analysis of system (3.14). We
follow the same line as the proof of lemma 3.6 in [46]. Here in the proof of lemma 3.3, we
convert the system (3.14) into the problem (3.17) with φcr defined by (3.16). Let c1 > c2 > 0
and φc1 (t), φc2 (t) be the local solution constructed in (3.10). The function ψ̃c(φc) defined in
(3.15) corresponding to ci is denoted by ψ̃i(φ) for i = 1, 2. Then we have

dψ̃i

dφ
= ci −

mφm−1 · (b(φi
cir

) − d(φ))

ψ̃
1

p−1
i (φ)

, φ ∈ (0,φ∗
i ), i = 1, 2, (3.22)

where φ∗
i is the supremum of φci (t) on its strictly increasing interval and φi

cir depends on the
functionφci (t) such that we add a superscript on eachφcir. Forφ ∈ (0,φc1(c1r)), or equivalently,
t ∈ (0, c1r) for the function φc1 (t), we have (note that φ1

c1r = 0 and φ2
c2r � 0)

dψ̃1

dφ
= c1 +

mφm−1 · d(φ)

ψ̃
1

p−1
1 (φ)

> c2 +
mφm−1 · d(φ)

ψ̃
1

p−1
1 (φ)

,

and

dψ̃2

dφ
= c2 −

mφm−1 · (b(φ2
c2r) − d(φ))

ψ̃
1

p−1
2 (φ)

� c2 +
mφm−1 · d(φ)

ψ̃
1

p−1
2 (φ)

.

The dynamic behaviour of the following ODE

dψ̃
dφ

= c +
mφm−1 · d(φ)

ψ̃
1

p−1 (φ)
, ψ̃(0) = 0, ψ̃(φ) > 0,φ > 0,
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show that (see (3.7) in the proof of lemma 3.1)

ciφ � ψ̃i(φ) � ciφ+
mM

c
1

p−1
i

(
m − 1

p−1

)φm− 1
p−1+1, φ ∈ [0,φ∗

i ], i = 1, 2.

It follows that ψ̃1(φ) > ψ̃2(φ) locally near φ = 0.
We further show that ψ̃1(φ) > ψ̃2(φ) for all φ ∈ (0, min{φ∗

1,φ∗
2}). According to the

definition of φcr in (3.16) (or equivalently, the property of φc(t − cr)), for t > c1r, we have
(note that φ1

c1r > 0 and φ2
c2r > 0)

∫ φ

φ1
c1r

msm−1

ψ̃
1

p−1
1 (s)

ds = c1r,
∫ φ

φ2
c2r

msm−1

ψ̃
1

p−1
2 (s)

ds = c2r. (3.23)

In the interval (0,φ0) where ψ̃1(φ) > ψ̃2(φ), the relation c1 > c2 in (3.23) implies

φ1
c1r < φ2

c2r.

This comparison of delayed values is essential for the comparison of functions φc(t) with
different speed parameters c. We choose φ0 to be the maximal one such that ψ̃1(φ) > ψ̃2(φ)
for φ ∈ (0,φ0) and ψ̃1(φ0) = ψ̃2(φ0) =: ψ̃0. Now we can conclude from (3.22) that at φ = φ0

dψ̃1

dφ
− dψ̃2

dφ
= (c1 − c2) −

⎛
⎝mφm−1 · (b(φ1

c1r) − d(φ))

ψ̃
1

p−1
1 (φ)

−
mφm−1 · (b(φ2

c2r) − d(φ))

ψ̃
1

p−1
2 (φ)

⎞
⎠

= (c1 − c2) −
mφm−1 · (b(φ1

c1r) − b(φ2
c2r))

ψ̃
1

p−1
0

> c1 − c2 > 0,

where we have used φ1
c1r < φ2

c2r. This contradicts to the situation that ψ̃1(φ) − ψ̃2(φ) > 0 in

(0,φ0) and ψ̃1(φ0) − ψ̃2(φ0) = 0. The proof is completed. �

Lemma 3.5. There exists a unique number c∗ = c∗(m, p, r) > 0 such that φc∗ (t) is strictly
increasing on (0,+∞) with φc∗ (+∞) = K, and the function φc∗ (t) is the unique travelling
wave solution of sharp type. The speed of any smooth travelling wave is greater than c∗(m, p, r),
and no travelling waves φ(x + ct) exist when c < c∗. Namely, c∗ is the minimal admissible
travelling wave speed.

Proof. This is proved in a similar way as lemmas 3.7 and 3.9 in [46]. Lemma 3.4 shows the
strictly monotone dependence of φc(t) on c and lemma 3.3 shows that φc(t) decays to zero for
small c and grows to +∞ for large c. Define

c∗ = c∗(m, p, r) := inf{c > 0; φc(t) grows up to K in finite time}. (3.24)

Then c∗ is the unique speed of the sharp travelling wave. We assert that φc∗ (t) is bounded.
Otherwise, assume that there exists a t1 > cr such that φc∗ (t1) > K. Note that c∗ is the infimum
of speed c such that φc(t) grows up to K in finite time. In other words, for c < c∗, φc(t) cannot
grow up to K in finite time and then sup

t∈(0,t∗)
φc(t) � K, where (0, t∗) is the existence interval

of φc(t). Now we conclude that for c < c∗, φc(t1) < K; and for c � c∗, φc(t1) � φc∗ (t1) > K
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according to the monotone dependence of φc(t) on c as proved in lemma 3.4. This contradicts
to the continuous dependence of φc(t) on c in lemma 3.4 since for c < c∗ sufficiently close to
c∗, there always exists a gap (K,φc∗(t1)) between φc(t1) and φc∗ (t1).

Next, we prove that the speed of any smooth travelling wave is greater than c∗(m, p, r). Here
we need to note the following asymptotic behaviour near zero of the phase function ψ̃(φ),
defined as (3.15) for any travelling wave solution φ(t) with ψ(t) := |(φm(t))′|p−2(φm(t))′:

(a) If φ(t) is a sharp travelling wave with speed c, then ψ̃(φ) = cφ+ o(φ), as φ→ 0+,
according to lemma 3.1;

(b) If φ(t) is a smooth travelling wave with speed c, then

ψ̃(φ) ∼
(

m(b′(0)e−λcr − d′(0))
c

)p−1

φm(p−1), as φ→ 0+, (3.25)

where λ > 0 is the unique root of the equation cλ+ d′(0) = b′(0)e−λcr.

The asymptotic expansion (3.25) follows from the characteristic equation of (2.1) corre-
sponding to smooth travelling wave φ(t) ∼ aeλt with a > 0 and λ > 0 as t →−∞, such that

caλeλt ∼ am(p−1)(mλ)p(p− 1)em(p−1)λt − d′(0)aeλt + b′(0)aeλ(t−cr), t →−∞.

The characteristic equation is cλ = −d′(0) + b′(0)e−λcr. And the definition of
ψ(t) = |(φm(t))′|p−2(φm(t))′ ∼ am(p−1)(mλ)p−1em(p−1)λt ∼ (mλ)p−1φm(p−1)(t) as t →−∞
with λ = b′(0)e−λcr−d′(0)

c . Here we have a priori assumed the existence of smooth travelling
wave and try to estimate its speed.

Suppose that φ̂(t) is a smooth travelling wave with speed c > 0. The phase function corre-
sponds to φ̂(t) is denoted by ψ̂(φ). Let φc(t) be the local solution of sharp type with the same
speed and ψ̃(φ) be its phase function. Locally near zero,

ψ̂(φ) ∼
(

m(b′(0)e−λcr − d′(0))
c

)p−1

φm(p−1) < cφ ∼ ψ̃(φ), as φ→ 0+,

since m(p− 1) > 1. It follows that the trajectory ψ̃(φ) corresponding to sharp travelling wave
(if it exists) locates above the trajectory ψ̂(φ) corresponding to smooth travelling wave (if
it exists), though they correspond to the same speed. Therefore, the monotone dependence
(see the proof of lemma 3.4) shows that ψ̃(φ) > ψ̂(φ) for φ ∈ (0, K]. Note that correspond-
ing to the critical speed c∗, ψ̃(φ) decays to zero at K such that ψ̃(K) = 0 since φc∗ (+∞) = K
and φ′

c∗ (+∞) = 0 (which means ψ̃(φ) = 0 at φ = K). The monotone dependence of φc(t) on
c implies that corresponding to any speed c � c∗, there exists a κ ∈ (0, K] such that ψ̃(φ)
decays to zero at φ = κ. Thus, the relation ψ̃(φ) > ψ̂(φ) for φ ∈ (0, K] shows that ψ̂(φ) decays
to zero before φ = K for any speed c � c∗. In other words, the smooth solution for speed
c � c∗ (if exists) starts to decrease before reaching K, and hence it never reaches K similar
to the proof of lemma 3.2. It follows that the speed of smooth solution must be greater than
c∗(m, p, r). �

We also need to describe the asymptotic behaviour of the phase function ψ̃(φ) near the
positive equilibrium K, which is important to the variational characterization of critical wave
speed.
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Lemma 3.6. The phase function ψ̃(φ) defined in (3.15) for the unique sharp travelling wave
solution φ(t) satisfies the following asymptotic expansion:

(a) If p = 2, then

ψ̃(φ) = κ2(K − φ) + o(|K − φ|), as φ→ K−,

where λ > 0 is the unique positive root of

mKm−1λ2 + cλ+ b′(K)eλcr − d′(K) = 0,

and κ2 :=mKm−1λ;
(b) If p > 2, then

ψ̃(φ) = κp(K − φ)p−1 + o(|K − φ|p−1), as φ→ K−,

where λ > 0 is the unique positive root of

cλ+ b′(K)eλcr − d′(K) = 0,

and κp := (mKm−1λ)p−1 for p > 2;
(c) If 1 < p < 2, then

ψ̃(φ) = κp(K − φ)
2(p−1)

p + o
(
|K − φ|

2(p−1)
p

)
, as φ→ K−,

where λ > 0 is the unique positive root of

mp−1K(m−1)(p−1) 2(p− 1)
p

(
p

2 − p
λ

)p

+ b′(K) − d′(K) = 0.

and κp :=mp−1K(m−1)(p−1)
(

p
2−pλ

)p−1
for p ∈ (1, 2).

Proof. For p � 2, we utilize the ansatz of expansion ψ̃(φ) ∼ κ(K − φ)p−1 and
φ(t) − K ∼ −μe−λt as t →+∞ and φ→ K− for some positive constants κ, μ and λ. Further,
d(φ) − d(K) ∼ d′(K)(φ− K), and b(φcr) − b(K) ∼ b′(K)(φcr − K), as t →+∞, where
φcr = φ(· − cr). Noticing that b(K) = d(K), we see that

b(φcr) − d(φ) ∼ b′(K)(φcr − K) − d′(K)(φ− K)

∼ (b′(K) − d′(K))(φ− K) + b′(K)(φcr − φ)

∼ (b′(K) − d′(K))(φ− K) + b′(K)(eλcr − 1)(φ− K)

∼ (b′(K)eλcr − d′(K))(φ− K),
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as t →+∞ since φcr−φ
φ−K ∼ eλcr − 1. According to (3.14) and (3.17), near K, ψ̃ behaves

similar as ⎧⎪⎨
⎪⎩

dψ̃
dφ

∼ c − mKm−1 · (b′(K)eλcr − d′(K))(φ− K)

ψ̃
1

p−1 (φ)
,

ψ̃(K) = 0, ψ̃(φ) > 0 forφ ∈ (0, K).

(3.26)

For the special case p = 2, dψ̃
dφ ∼ −κ, and the singular ODE (3.26) admits a solution sat-

isfying the expansion ψ̃(φ) ∼ κ(K − φ) provided that κ > 0 is the unique positive root of the
following equation

−κ = c +
mKm−1 · (b′(K)eλcr − d′(K))

κ
. (3.27)

Additionally, a necessary condition for the characteristic value λ > 0 of the travelling wave of
(2.1) satisfying φ(t) − K ∼ −μe−λt as t →+∞ is

mKm−1λ2 + cλ+ b′(K)eλcr − d′(K) = 0. (3.28)

Moreover, according to the asymptotic expansions ψ̃(φ) ∼ κ(K − φ) and φ(t) − K ∼ −μe−λt,
noticing that ψ̃(φ) = ψ(t) = (φm(t))′ ∼ mKm−1φ′(t) for p = 2, there must hold

κ = mKm−1λ. (3.29)

Since d′(K) > b′(K) � 0, the characteristic equation (3.28) admits a unique positive rootλ > 0,
and then (3.27) is equivalent to (3.29).

For the case p > 2, dψ̃
dφ = o(1) as φ→ K−, and in this situation (3.27) reads as

0 = c +
mKm−1 · (b′(K)eλcr − d′(K))

κ
1

p−1
. (3.30)

The characteristic equation (3.28) now is

cλ+ b′(K)eλcr − d′(K) = 0. (3.31)

Similar to (3.29) the relation between the expansions ψ̃(φ) ∼ κ(K − φ)p−1 and φ(t) − K ∼
−μe−λt implies

ψ̃(φ) = ψ(t) = |(φm(t))′|p−2(φm(t))′ ∼ (mKm−1φ′(t))p−1 ∼ κ(K − φ)p−1.

That is,

κ = (mKm−1λ)p−1. (3.32)

The characteristic equation (3.31) has a unique positive root λ > 0 and (3.30) is equivalent to
(3.32) in this case.

The case of 1 < p < 2 is quite different, we utilize the ansatz ψ̃(φ) ∼ κ(K − φ)
2(p−1)

p and
φ(t) − K ∼ −μ(1 + λt)−

p
2−p as t →+∞ and φ→ K− for some positive constants κ, μ and

λ. It should be addressed that the sharp travelling wave approached the positive equilibrium
K algebraically instead of exponentially. Note that 2(p−1)

p ∈ (0, 1), 2(p−1)
p − 1 = 1 − 2

p , and
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p
2−p ∈ (1,+∞) for p ∈ (1, 2). The algebraically decay behaves differently from the exponential
decay, such that

b(φcr) − d(φ) ∼ b′(K)(φcr − K) − d′(K)(φ− K)

∼ (b′(K) − d′(K))(φ− K) + b′(K)(φcr − φ)

∼ (b′(K) − d′(K))(φ− K),

as t →+∞ since φcr−φ
φ−K = o(1). The singular ODE (3.26) now shows that

2(p− 1)
p

· κ = −mKm−1 · (b′(K) − d′(K))

κ
1

p−1
. (3.33)

For the degenerate case such that φ(t) − K ∼ −μ(1 + λt)−
p

2−p (assume μ = 1 by rescaling),
we have

(|(φm(t))′|p−2(φm(t))′)′ = (mp−1φ(m−1)(p−1)|φ′|p−2φ′)′

= mp−1φ(m−1)(p−1)(p− 1)|φ′|p−2φ′′

+ mp−1(m − 1)(p− 1)φ(m−1)(p−1)−1|φ′|p

∼ mp−1φ(m−1)(p−1)(p− 1)|φ′|p−2φ′′,

since |φ′|p = o(|φ′|p−2φ′′) according to p
2−p > 1. Moreover, φ′ = o(|K − φ|) =

o(b(φcr) − d(φ)), and then the characteristic equation of (2.1) is

−mp−1φ(m−1)(p−1)(p− 1)|φ′|p−2φ′′ ∼ b(φcr) − d(φ)

∼ (b′(K) − d′(K))(φ− K),

which means

mp−1K(m−1)(p−1)(p− 1)

(
p

2 − p
λ

)p−2 p
2 − p

2
2 − p

λ2 + b′(K) − d′(K) = 0.

That is,

mp−1K(m−1)(p−1) 2(p− 1)
p

(
p

2 − p
λ

)p

+ b′(K) − d′(K) = 0. (3.34)

Moreover, according to the asymptotic expansions ψ̃(φ) ∼ κ(K − φ)
2(p−1)

p and φ(t) − K ∼
−(1 + λt)−

p
2−p , we have

ψ̃(φ) =|(φm(t))′|p−2(φm(t))′ ∼ (mKm−1φ′(t))p−1

∼mp−1K(m−1)(p−1)

(
p

2 − p
(1 + λt)−

2
2−pλ

)p−1

∼κ
(

(1 + λt)−
p

2−p

) 2(p−1)
p

.
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Therefore,

κ = mp−1K(m−1)(p−1)

(
p

2 − p
λ

)p−1

. (3.35)

The characteristic equation (3.34) has a unique positive root λ, and then (3.35) is identical to
(3.33). �

The critical wave speed c∗(m, p, 0) for non-delayed case is characterized via a variational
approach by Benguria and Depassier [4–6]. For time-delayed case, we utilize the variational
characterization method to show the dependence of the critical wave speed c∗(m, p, r) with
respect to the time delay r.

Lemma 3.7. The minimal travelling wave speed c∗(m, p, r) for the time delay r > 0 is strictly
smaller than that without time delay, i.e. c∗(m, p, r) < c∗(m, p, 0).

Proof. Let φ(t) be the unique sharp type travelling wave corresponding to the speed
c = c∗(m, p, r) according to lemma 3.5. This kind of special solution is the unique one that
is strictly increasing on (0,+∞), φ(+∞) = K and φ′(+∞) = 0, according to the monotone
dependence lemmas 3.4 and 3.5.

In the proof of lemma 3.3, we formulate the generalized phase plane (3.14) and (3.17),
where φcr is defined by (3.16). Moreover, ψ̃(0) = 0, ψ̃(K) = 0 since φ′(+∞) = 0, ψ̃(φ) > 0
for all φ ∈ (0, K). We rewrite (3.17) into

dψ̃
dφ

= c − mφm−1(b(φ) − d(φ))

ψ̃
1

p−1
+

mφm−1(b(φ) − b(φcr))

ψ̃
1

p−1
, φ ∈ (0, K). (3.36)

For any g ∈ D = {g ∈ C1([0, K]);
∫ K

0 g(s)ds = 1, g(s) > 0, g′(s) < 0, ∀s ∈ (0, K)}, we multi-
ply (3.36) by g(s) and integrate it over (0, K) to find

c =

∫ K

0
g(φ)

dψ̃
dφ

dφ+

∫ K

0
g(φ)

mφm−1(b(φ) − d(φ))

ψ̃
1

p−1
dφ

−
∫ K

0
g(φ)

mφm−1(b(φ) − b(φcr))

ψ̃
1

p−1
dφ

=

∫ K

0
− g′(φ)ψ̃(φ)dφ+

∫ K

0
g(φ)

mφm−1(b(φ) − d(φ))

ψ̃
1

p−1
dφ

+
[
g(φ)ψ̃(φ)

]∣∣∣φ=K

φ=0
−
∫ K

0
g(φ)

mφm−1(b(φ) − b(φcr))

ψ̃
1

p−1
dφ

= F(g, ψ̃) −
∫ K

0
g(φ)

Dmφm−1(b(φ) − b(φ̃cr(φ)))

ψ̃
dφ, (3.37)

according to
∫ K

0 g(s)ds = 1 and [g(φ)ψ̃(φ)]
∣∣∣φ=K

φ=0
= 0 as ψ̃(0) = 0 = ψ̃(K), where the functional

F(g, ψ̃) :=
∫ K

0
− g′(φ)ψ̃(φ)dφ+

∫ K

0
g(φ)

mφm−1(b(φ) − d(φ))

ψ̃
1

p−1
dφ.
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Next, we consider the function F(g, ψ̃) over all set D. Utilizing Young’s inequality, we see
that

F(g, ψ̃) �
∫ K

0

p
(p− 1)(p−1)/p

(−g′(φ))
1
p (g(φ))

p−1
p (mφm−1(b(φ) − d(φ)))

p−1
p dφ, (3.38)

see also in [6] for non-delayed case. The equality in (3.38) is attainable if there exists a function
ĝ ∈ D such that

mφm−1(b(φ) − d(φ))ĝ(φ) = (p− 1)(−ĝ′(φ))ψ̃
p

p−1 (φ), φ ∈ (0, K). (3.39)

The existence of a ĝ ∈ D solving (3.39) relies heavily on the asymptotic behaviour of ψ̃(φ)
near K and near 0 as shown in lemmas 3.6 and 3.1. According to lemma 3.6,

ψ̃
p

p−1 (φ) ∼
{
κ(K − φ)p, p � 2,

κ(K − φ)2, p ∈ (1, 2),

where κ > 0 is a positive number. Therefore, ĝ(K) = 0. Otherwise,

−ĝ′(φ)
ĝ(φ)

=
mφm−1(b(φ) − d(φ))

(p− 1)ψ̃
p

p−1 (φ)
∼ mKm−1(d′(K) − b′(K))

(p− 1)κ(K − φ)max{p−1,1} , as φ→ K−,

(3.40)

which is not integrable, a contradiction. Consider the singular ODE (3.40) near K with the
condition ĝ(K) = 0, and ĝ′(φ) < 0 for φ ∈ (0, K), since max{p− 1, 1} � 1 for all p > 1, it has
infinitely many solutions such that ĝ(φ) > 0 for φ ∈ (0, K). If ĝ(0) is finite, we can normalize
ĝ such that

∫ K
0 ĝ(φ)dφ = 1 and then ĝ ∈ D. According to lemma 3.1, ψ̃(φ) ∼ cφ as φ→ 0+.

Then

−ĝ′(φ)
ĝ(φ)

=
mφm−1(b(φ) − d(φ))

(p− 1)ψ̃
p

p−1 (φ)
∼ m(b′(0) − d′(0))φm

(p− 1)c
p

p−1 φ
p

p−1
, as φ→ K−.

(3.41)

It follows that ĝ(0) < +∞ since m − p
p−1 > −1 as m(p− 1) > 1 such thatφm− p

p−1 is integrable
near zero.

Finally, for ĝ ∈ D, we have

c = F(ĝ, ψ̃) −
∫ K

0
ĝ(φ)

Dmφm−1(b(φ) − b(φ̃cr(φ)))

ψ̃
dφ

< F(ĝ, ψ̃)

� sup
g∈D

∫ K

0

p
(p− 1)(p−1)/p

(−g′(φ))
1
p (g(φ))

p−1
p (mφm−1(b(φ) − d(φ)))

p−1
p dφ

= c∗(m, p, 0),

where the last equality is the variational characterization of the speed for non-delayed case as
proved in [6]. The proof is completed. �
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Proof of theorem 2.1. The existence and uniqueness of sharp type travelling wave are
proved in lemma 3.5. According to lemma 3.7, we see that time delay slows down the critical
wave speed. Any other travelling waves must be positive and the regularity is trivial since (2.1)
is non-degenerate at where φ(t) > 0. �

Proof of theorem 2.2. This is proved according to the asymptotic behaviour near 0 in
lemma 3.1. �

4. Model formulation

The models with degenerate diffusion but without time-delay were firstly introduced in
[17, 31], and the models with time-delay and regular diffusion were widely studied in
[10, 23, 26–28, 36, 39, 40]. However, the derivation of the models with both effects of degen-
erate diffusion and time-delay is not officially derived, even if such models had been proposed
and studied in our previous research works [18, 45–47] based on the mathematical concern-
ing. In this section, we develop a degenerate diffusion model with time delay that arises in the
modelling of age-structured populations. Here, we give a brief derivation of the equations we
treat.

The problem is as follows. Let a denote chronological age, t denote time and x denote
spatial position, and let u(a, t, x) denote the population density of age a at time t and at position
x. Here, we concerns species whose life cycles consist of two demographically distinct phases
incorporating immature and reproductive periods. By r � 0 we denote the maturation time that
divides the two phases, so the matured population density at location x and time t is

u(x, t) =
∫ ∞

r
v(t, x, a)da. (4.1)

Also, since only the mature can reproduce, the functional dependence of birth rate β is assumed
to enter only through dependence on u and so that β = β(u).

Assuming that the emigration in species due to intraspecific competition in a way that
makes the flux of individuals proportional to the gradient of the mature population, in [8],
the following age-structured population model with degenerate diffusion is derived⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂v

∂a
+

∂v

∂t
= g(t, x, u,∇u) · ∇v + h(t, x, u,∇u, D2u)v − μv, x ∈ R

n, t > 0,

v(0, t, x) =
∫ ∞

r
β(u)v(a, t, x)da,

v(a, 0, x) = v0(a, x).

(4.2)

Using (4.1) and integrating the partial differential equation (4.2) from r to +∞, we obtain for
t > 0 and x ∈ R

n

∂u
∂t

= g̃(t, x, u,∇u) · ∇u + h̃(t, x, u,∇u, D2u)u + β(u(t − r, x))u(t − r, x)S − μu.

(4.3)

In obtaining (4.3) the following biological realistic assumptions are necessary [41]: (i)
v(a, t, x) → 0 as a →+∞; (ii) the birth rate at time t reduces to v(0, t, x) = β(u)u; and (iii)
v(r, t, x) = v(0, t − r, x)S, where S is the fraction of individuals that survives through the first
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demographic phase. The last point reflects the fact that the individuals of age r is made up of
the survivors that were born at time t − r.

The spatial diffusion term g̃ · ∇u + h̃u includes operators of the form Δum and doubly non-
linear operator in (1.1). When r = 0, p = 2, m > 1, (4.3) may reduce to density dependent
models of population dynamics of the form

∂u
∂t

= Δum + β(u)u − μu, x ∈ R
n, t > 0, (4.4)

which was considered by means of existing theory (Aronson [1], Gurtin and MacCamy [16]).
Our model includes a large number of evolution equations in biology, for example, the degen-
erate delayed Fisher–KPP equations, the degenerate Nicholson’s blowflies equation, and the
Mackey–Glass equation.

Acknowledgments

The authors would like to express their sincere thanks for two referees’ valuable comments and
suggestions, which led the paper a significant improvement. The research of S Ji was supported
by Guangdong Basic and Applied Basic Research Foundation Grant No. 2021A1515010367
and Guangzhou Basic and Applied Basic Research Foundation 202102021050. The research
of M Mei was supported in part by NSERC Grant RGPIN-2022-03374. The research of
T Xu was supported by Guangdong Basic and Applied Basic Research Foundation Grant
Nos. 2021A1515110951 & 2019A1515010993, China Postdoctoral Science Foundation No.
2021M691070, Guangzhou Basic and Applied Basic Research Foundation, NSFC Grant
Nos. 11971179 & 11871230. The research of J Yin was supported by NSFC Grant No.
12171166.

ORCID iDs

Shanming Ji https://orcid.org/0000-0001-5673-4327

References

[1] Aronson D G 1980 Density-dependent interaction–diffusion systems Proc. Adv. Seminar on
Dynamics and Modeling of Reactive System (New York: Academic)

[2] Audrito A and Vázquez J L 2017 The Fisher–KPP problem with doubly nonlinear diffusion J. Differ.
Equ. 263 7647–708

[3] Ben-Jacob E, Cohen I and Levine H 2000 Cooperative self-organization of microorganisms Adv.
Phys. 49 395–554

[4] Benguria R D and Depassier M C 1995 Variational principle for the asymptotic speed of fronts of
the density-dependent diffusion–reaction equation Phys. Rev. E 52 3285–7

[5] Benguria R D and Depassier M C 1996 Variational characterization of the speed of propagation of
fronts for the nonlinear diffusion equation Commun. Math. Phys. 175 221–7

[6] Benguria R D and Depassier M C 2018 Variational characterization of the speed of reaction diffusion
fronts for gradient dependent diffusion Ann. Henri Poincaré 19 2717–26
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