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Abstract. In this paper, we investigate the existence and regularity of the smooth transonic
steady solutions of Euler–Poisson equations representing for the hydrodynamic model of semicon-
ductors. Different from the previous studies with the various setting boundaries, we observe that
the crucial mechanism to affect the structure of the stationary Euler–Poisson equations is the doping
profile. When the doping profile is supersonic, regardless of the boundary settings, we prove that
the Euler–Poisson system possesses two C∞-smooth transonic solutions. One is from the supersonic
region to the subsonic region, and the other is of the inverse direction. However, when the doping
profile is subsonic, the case is more complicated. We prove that there is no continuous transonic
solution if the semiconductor effect is small enough, but there will arise two kinds of smooth tran-
sonic solutions when the semiconductor effect is large enough. Both of them are from the supersonic
region the to subsonic region, where one is a unique C∞-smooth transonic solution with a relatively
large number as its derivative at the sonic point, and the other consists of a class of smooth transonic
solutions with another relatively small number as the derivative at the sonic point. This class of
solutions are proved mostly to be C∞ smooth, except for a special case in which we only prove the
Cm smoothness. The method adopted is mainly the manifold analysis and the singularity analysis
near the sonic line and the singular point.
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1. Introduction. This paper is concerned with the smooth transonic solutions
for the one-dimensional steady hydrodynamic model for semiconductors, which is
written as the Euler–Poisson equations with the relaxation effect

nt + (nu)x = 0,

(nu)t + (nu2 + P (n))x = nE − nu
τ ,

Ex = n− b(x).

(1.1)

This model is used to describe the motion of electrons in semiconductor devices or
plasmas [4, 6, 9, 20]. Here the particle density n, the particle velocity u, and the
electric field E are the unknowns, which are coupled through the Euler equation and
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SMOOTH TRANSONIC STEADY STATES 4909

the Poisson equation. P = P (n) is the pressure function of the electron density. For
the ideal gas law of isentropic case, the pressure function is physically represented by

P (n) = Tnγ ,

where T > 0 is a constant, and γ > 1 represents the adiabatic exponent. In this
paper, we mainly consider the isothermal case, i.e., γ = 1 for simplicity of analysis.
The function b(x) > 0 is the doping profile standing for a background density of
charged ions, and we take it as a constant in the present paper. τ > 0 means the
momentum relaxation time. We set

α :=
1

τ
, the reciprocal of the delay time of the current,(1.2)

and denote

J = nu, the current density.(1.3)

We consider the current driven flow; thus the current density J is a prescribed con-
stant. Then the stationary flow of (1.1) is

J = constant,(
J2

n + P (n)
)
x
= nE − αJ,

Ex = n− b.

(1.4)

Using the terminology from gas dynamics, we call c :=
√

P ′(n) =
√
T > 0 the sound

speed for P (n) = Tn. Thus, the stationary flow is supersonic/sonic/subsonic if the
fluid velocity satisfies

fluid velocity : u =
J

n
> ( or =, or <)c =

√
P ′(n) =

√
T : sound speed.

Note that if (n(x), E(x)) is a solution to (1.4) for a given constant J , then (n(1 −
x),−E(1− x)) is a solution to (1.4) with respect to −J and b(1− x). Therefore, we
just think about the case of J > 0.

Without loss of generality, in the subsequent analysis, assume that T = 1, i.e.,
P = n; then the above equations (1.4) can be reduced to{(

1− J2

n2

)
nx = nE − αJ,

Ex = n− b.
(1.5)

Thus, it is identified that n > J is for the subsonic flow, n = J is for the sonic flow,
and 0 < n < J represents the supersonic flow.

As we know, with different boundary settings, the stationary Euler–Poisson sys-
tem (1.4) may or may not possess the subsonic/supersonic/transonic solutions. For
subsonic flows, Degond and Markowich first proved that when the system is with a
strong subsonic background (subsonic Ohmic contact boundary and subsonic doping
profile), the system exists as a unique subsonic smooth solution in the one-dimensional
case [8] and for potential flow in the multidimensional case [9]. Under different sub-
sonic boundary conditions and in the multidimensional cases the subsonic flows were
then studied in [2, 3, 4, 13, 14, 15, 21, 22].
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4910 M. WEI, M. MEI, G. ZHANG, AND K. ZHANG

On the other hand, when the boundary setting is still subsonic but the doping pro-
file is supersonic, Ascher et al. [1] first observed a one-dimensional transonic solution
via a phase-plane analysis. Furthermore, Gamba and Morawetz [11, 12] constructed
the transonic solutions with a shock by artificial viscosity approximation. The well
posedness and the structure of the transonic flow were studied in [10, 19, 24] for
Euler–Poisson equations. The structure stability and the time-asymptotic behavior
of solutions were investigated in [13, 14, 15, 18, 21, 22].

For the supersonic flow with both the supersonic boundary and doping profile,
Peng and Violet [23] and Bae et al. [5] obtained the existence and uniqueness of the
supersonic solution.

Recently, when the boundary is subjected to be sonic (the critical case), Li et al.
[16, 17] first classified the structure of all-type solutions to (1.4). When the dop-
ing profile is subsonic, the steady Euler–Poisson system possesses a unique subsonic
solution, at least one supersonic solution, and infinitely many shock-transonic solu-
tions when the semiconductor effect is weak (τ ≫ 1) and infinitely many C1-smooth
transonic solutions when the semiconductor effect is strong (τ ≪ 1); while when the
doping profile is supersonic and far from the sonic line, there is not any physical
(subsonic/supersolic/transonic) solution. The supersonic solution and many shock-
transonic solutions exist only when the doping profile is sufficiently close to the sonic
line. When the doping profile is transonic, according to two cases of the subsonic-
dominated and supersonic-dominated doping profile, Chen et al. [7] further classified
the structure of all subsonic/supersonic/shock-transonic solutions.

However, from the existing studies [1, 16, 17, 24], there are no more detailed
discussions on the structure of the directions of the transonic solutions, what kind
regularity of the smooth transonic solutions, and in particular, what will be the crucial
mechanism of the system to possess the transonic solutions. To answer these technical
questions will be the main goal of the present paper.

In this paper, we observe that the crucial mechanism to affect the structure of
the stationary Euler–Poisson equations is the doping profile, regardless of the bound-
ary settings. When the doping profile is supersonic, we prove that the Euler–Poisson
system possesses two C∞-smooth transonic solutions. One is from the supersonic
region to the subsonic region, and the other is of the inverse direction. However,
when the doping profile is subsonic, the case is more complicated. We prove that
there is no continuous transonic solution if the semiconductor effect is small enough,
but there will arise two kinds of smooth transonic solutions when the semiconductor
effect is large enough. Both of them are from the supersonic region to the subsonic
region, where one is a unique C∞-smooth transonic solution with a relatively large
number as its derivative at the sonic point, and the other is a smooth transonic
solution with another relatively small number as its derivative at the sonic point.
This class of solutions is proved mostly to be C∞ smooth, except for a special case
in which we only prove the Cm smoothness. Remarkably, this is the first result to
show the C∞ smoothness of the transonic solutions. The method adopted is mainly
the manifold analysis and singularity analysis near the sonic line and the singular
point.

The main results of this paper are as follows.

Theorem 1.1. Let the doping profile be supersonic, i.e., b < J ; then the steady-
state Euler–Poisson equations of (1.5) possess two C∞-smooth transonic solutions,
one of which is from the subsonic region to the supersonic region, and another is from
the supersonic region to the subsonic region.

D
ow

nl
oa

de
d 

08
/3

0/
21

 to
 1

42
.1

57
.1

92
.0

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMOOTH TRANSONIC STEADY STATES 4911

Theorem 1.2. Let the doping profile be subsonic, i.e., b > J ; then the steady-
state Euler–Poisson equations of (1.5) admit the following:

1. When α = 1
τ ≥ 0, but α is sufficiently small, the system (1.5) has no contin-

uous transonic solution.
2. When α = 1

τ > 0, and α is large enough, the system (1.5) possesses two kinds
of smooth transonic solutions, and they are all from the supersonic region
to the subsonic region. One is corresponding to a unique and C∞-smooth
solution, which has a relatively large derivative at the sonic point. The other
kind is corresponding to a class of smooth transonic solutions with a relatively
small derivative at the sonic point. For the last class of solutions we prove
that when h(α, b, J)∈̄Z they are C∞ smooth, and when h(α, b, J) ∈ Z they are

Cm smooth, where h(α, b, J) = 8(b−J)

[α−
√

α2−8(b−J)]2
, m = 8(b−J)

[α−
√

α2−8(b−J)]2
− 1,

and Z is the set of all integers.

Remark 1.
1. The proof of the above theorems is mainly by phase-plane analysis and by

singularity analysis near the sonic line and around the sonic point.
2. The doping profile b is taken as a constant in the paper, and of course, it

will affect the regularity when it is a general function, and it will be more
complicated for this case.

3. We take P (n) = Tn just for simplicity, and the method in this paper can be
applied for the case of P (n) = Tnγ .

4. Due to the technique reason, we can only derive the Cm-smooth result for
some special case in Theorem 1.2, and maybe it is not optimal.

The main structure of this paper is as follows. In section 2, the existence and
smoothness of the transonic solutions of the system (1.5) are discussed when the
doping profile is supersonic. It is divided into two parts. The first part is for α = 0;
that is, the case of infinite relaxation time τ = ∞. The second part is for α > 0,
where the trajectory equation can not be solved directly. We make a local analysis on
the phase plane near the sonic line and then prove the existence and smoothness of
the trajectory that is passing through the singular point. Section 3 is devoted to the
case of the subsonic doping profile. It is also divided into two parts. The first part is
that when α is small enough, we prove that there is no continuous transonic solution.
The second part is that for a α large enough, we prove that the system has infinitely
many smooth transonic solutions by combining the local manifold analysis and the
singularity analysis around the sonic point. Moreover, we describe these trajectories,
which converge to the singular point in detail; that is, only one trajectory converges
to the singular point with a large slope, and it is proved to be C∞ smooth. The
other trajectories that converge to the singular point have a relatively small slope,
and whether these trajectories can be C∞ smooth depends on the value of h(α, b, J),
which is defined in section 3.

2. The case of b < J (supersonic doping profile).

2.1. The case: α = 0. This is corresponding to zero semiconductor effect. By
integrating equations and solving the ODE, the trajectory can be solved; thus the
proof is simplified. For this case, (1.5) is transformed into the simple case{(

1− J2

n2

)
nx = nE,

Ex = n− b.
(2.1)
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4912 M. WEI, M. MEI, G. ZHANG, AND K. ZHANG

From the first equation of the system (2.1), it can be seen that a continuous transonic
solution must pass through the point (J, 0) for (n(x), E(x)). We refer to this point as
the singular point. For n ̸= J , write{

nx = n3E
(n+J)(n−J) ,

Ex = n− b,
(2.2)

and the trajectory equation of the system (2.1) can be obtained by integrating the
equations of (2.2) as follows:

dE

dn
=

(n+ J)(n− J)(n− b)

n3E
.(2.3)

Lemma 2.1. Let the profile b < J ; then for α = 0, (2.3) has two continuous
transonic trajectories, and they are C∞, smooth.

Proof. First, we prove that for the system (2.3) there exist two continuous tra-
jectories that pass through the singular point (J, 0). Because the equation is variable
separable in this case, it can be solved directly. From (2.3),

EdE =
(n+ J)(n− J)(n− b)

n3
dn.

Now, integrating both sides of the above equation, we have

E2

2
= n+

J2

n
− b lnn− bJ2

2n2
+ C.

Substituting (n,E) = (J, 0) into the above equation, we then obtain

C =
b

2
+ b ln J − 2J,

and thus

E2 = 2n+
2J2

n
− 2b lnn− bJ2

n2
+ 2C.(2.4)

Denote

g(n) := 2n+
2J2

n
− 2b lnn− bJ2

n2
+ 2C.

Then

E(n) =

{√
g(n) for E > 0,

−
√

g(n) for E < 0.

Since the singularity is produced on the sonic line, i.e., n = J , therefore, we should do
the Taylor expansion of the trajectory equation (2.4) near the singular point (n,E) =
(J, 0). That means we just need to do the Taylor expansion of g(n) at the singular
point (n,E) = (J, 0); that is,

g(n) =

∞∑
k=0

g(k)(J)

k!
(n− J)k,
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SMOOTH TRANSONIC STEADY STATES 4913

where g(J) = g′(J) = 0 and g′′(J) > 0 can be obtained by simple calculation, and
then

E(n) =


|n− J |

√
g(2)(J)

2! +
∑∞

k=3
g(k)(J)

k! (n− J)k−2 for E > 0,

−|n− J |
√

g(2)(J)
2! +

∑∞
k=3

g(k)(J)
k! (n− J)k−2 for E < 0.

In order to simplify the formula, we denote

w(n) :=

√√√√g(2)(J)

2!
+

∞∑
k=3

g(k)(J)

k!
(n− J)k−2.(2.5)

Therefore, for E > 0 and n > J , it holds

E(n) = (n− J) · w(n).

Meanwhile, when E < 0 and n < J , the same result is obtained, namely, E(n) =
(n− J) · w(n). Thus we can obtain two branches and denote them as

E1 : E(n) = (n− J) · w(n),

and
E2 : E(n) = (J − n) · w(n).

As shown in Figure 1, it is easy to see that the trajectory solutions of this system are
symmetric about E = 0. According to the direction of the trajectory, we know one
of the trajectories is from the supersonic to the subsonic region, and another one is
from the subsonic to the supersonic region. Next, we analyze the regularity between
the solutions of the original system (2.1) and these trajectories. Because this system
is autonomous, let us assume limx→x0

n(x) = J ; then from the first equation of the
system (2.2),

lim
x→x0

nx = lim
n→J

n3

n+ J
· E

n− J
.(2.6)

Fig. 1. Phase plane of (n,E) with α = 0, b = 0.5, and J = 1 in the case of a supersonic doping
profile. The red ∗ is the singular point (1, 0); the black ∗ is the stable point (0.5, 0).

D
ow

nl
oa

de
d 

08
/3

0/
21

 to
 1

42
.1

57
.1

92
.0

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4914 M. WEI, M. MEI, G. ZHANG, AND K. ZHANG

Because w(n) defined in (2.5) is a part of the analytic expansion of g(n), w(n) is
infinitely smooth with respect to n; i.e., w(n) ∈ C∞. Thus, E(n) ∈ C∞ with E(J) =
0. In fact, by Hospital’s rule, we conclude nx is continuous. Furthermore, the value
of nx can be calculated in this case. Since Ex = En · nx, we calculate by (2.6)

lim
x→x0

nx = lim
n→J

n3

n+ J
· Ex

nx
,

which gives (
lim

x→x0

nx

)2

=
J2(J − b)

2
.

Since b < J , then

lim
x→x0

nx = ±
√

J2(J − b)

2
.

Thus system (2.1) has two smooth transonic solutions. In addition, for trajectory E1,

lim
x→x0

nx =

√
J2(J − b)

2
,

and for trajectory E2,

lim
x→x0

nx = −
√

J2(J − b)

2
.

Next, we prove that the transonic solutions are C∞ smooth. Without loss of
generality, we only need to discuss the smoothness of one of the trajectories. From
the second equation of the system (2.2), we know that if n(x) ∈ Ck, then E(x) ∈ Ck+1;
therefore, we only need to prove n(x) ∈ C∞.

According to the first equation of (2.1), we have

nx =
n3

n+ J
· w(n),

where w(n) ∈ C∞. Now, assume that n(x) ∈ Ck, taking the k + 1-order derivative
for n(x); then

n(k+1) = (nx)
(k)

=

[(
n3

n+ J

)
· w(n)

](k)
=

k∑
i=0

Ci
k

(
n3

n+ J

)(i)

(w(n))
(k−i)

,

and then n(x) ∈ Ck+1. By induction, we reach a conclusion of n(x) ∈ C∞.
Now, the proof is completed.

2.2. The case: α > 0. Now we consider the system (1.5) with α > 0 i.e., the
effect of semiconductors is taken into account. Note that for α > 0, the equation
is not variable separated. Therefore, a local analysis near the singular point on the
phase plane is necessary.

In this case, the corresponding singular point is (J, α). Write for n ̸= J ,{
nx = n2(nE−αJ)

(n+J)(n−J) ,

Ex = n− b.
(2.7)
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SMOOTH TRANSONIC STEADY STATES 4915

Furthermore, the equilibrium point of the system (2.7) is (b, αJ
b ), and the type is a

focus or node by calculation. Since the singular point and equilibrium point are on
the hyperbolic branch,

E =
αJ

n
, n > 0,

we call it the singularity line on which nx = 0 and En = ∞. In order to simplify the
proof process, transform the singularity line into a straight line via the transformation

Ẽ = E − αJ

n
,(2.8)

and system (2.7) is written asnx = n3Ẽ
(n+J)(n−J) ,

Ẽx = n− b+ αJnx

n2 .
(2.9)

The phase diagram of system (2.9) is shown in Figure 2. It can be seen that the

singularity line is Ẽ = 0, where Ẽn = ∞. Next, we only need to analyze the trend of
the trajectory Ẽ(n) in the (n, Ẽ)-phase plane. Through integrating the system (2.9),

for Ẽ ̸= 0 we write

Ẽ′(n) =
(n+ J)(n− J)(n− b)

n3Ẽ
+

αJ

n2
.(2.10)

For express convenience, define

f(n) :=
(n+ J)(n− b)

n3
,

and then

Ẽ′(n) = f(n) · 1
Ẽ

n−J

+
αJ

n2
.(2.11)

0 0.5 1 1.5 2

n

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 2. Phase plane of (n, Ẽ) with α = 1, b = 0.5, and J = 1 in the case of a supersonic doping
profile. The red ∗ is the singular point (1, 0); the black ∗ is the stable point (0.5, 0).
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Lemma 2.2. Let the doping profile b < J , α > 0; then (2.10) has two smooth
transonic trajectories that are C∞ smooth.

Proof. The proof is divided into five steps.
Step 1. We prove that there exist continuous trajectories through the singular

point (J, 0). Without loss of generality, it only needs to prove that there is a trajectory

tracing back to the singular point in the area of Ẽ > 0 and n > J .
First, let us analyze the trend of these trajectories that start from the part of

Ẽ > 0 on the sonic line. From (2.10), Ẽ′(n) = α
J > 0 for n = J and Ẽ > 0.

Furthermore, since b < J , we know that these trajectories will always keep Ẽ′(n) > 0.
As shown in Figure 3, these trajectories will intersect with the straight line lε0 :
n = J + ε0 (ε0 ≪ 0). Choose a starting point sequence, and set the intersection
of these trajectories and lε0 as An(J + ε0, an), n = 1, 2, . . .. Then {an} will form a
monotonically decreasing sequence with a lower bound. According to the monotone
bounded theorem, the sequence {an} is convergent. So, assume that

lim
n→∞

an = a0.(2.12)

Then we can easily prove a0 > 0.
Mark this critical trajectory as Ta, which intersects with the line lε0 at the point

(J + ε0, a0). Next, we prove that Ta will trace back to the singular point. In fact,

the trajectory Ta cannot trace back to the sonic line of Ẽ > 0. If the trajectory Ta

starts from the point (J, h), where h > 0, then the trajectory that starts from the
point (J, h

2 ) will intersect with the line lε0 . Since the system (2.9) is autonomous,
this trajectory will be under the trajectory Ta, which will contradict with (2.12).
Furthermore, we can illustrate that it cannot be traced back to the part of n > J on
the singularity line in the same way.

Thus, there exists a trajectory that traces back to the singular point (J, 0) in the

subsonic region of Ẽ > 0. In the same way, there will be a trajectory that traces back
to the singular point in the subsonic area of Ẽ < 0. Similarly, the same result can be
obtained in the corresponding supersonic part.

Step 2. We prove that the trajectory Ẽ(n) obtained in Step 1 is unique in the

area of Ẽ > 0 and n > J . In fact, since the system (2.7) is autonomous, if there are

two different continuous transonic trajectories Ẽ1(n) and Ẽ2(n), they must satisfy

n 

 !

o 

" = # " = $ %&
'

(#, 0)

*+

Fig. 3. Phase plane of (n, Ẽ) in the case of a supersonic doping profile.
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lim
n→J

Ẽ1(n) = lim
n→J

Ẽ2(n) = 0.(2.13)

Locally, assume that they satisfy the following conditions, i.e.,

Ẽ1(n) > Ẽ2(n), n ∈ (J, J + ε0),

and denote Ē(n) := Ẽ1(n)− Ẽ2(n); then

Ē(n) > 0, n ∈ (J, J + ε0).(2.14)

According to (2.10), it is obvious that

Ē′(n) = Ẽ′
1(n)− Ẽ′

2(n) < 0 for n ∈ (J, J + ε0).(2.15)

So, from (2.14) and (2.15), it follows

lim
n→J

Ē(n) > 0, for n ∈ (J, J + ε0),

namely,

lim
n→J

Ẽ1(n) > lim
n→J

Ẽ2(n),

which contradicts with (2.13). Thus, Ẽ(n) is unique in the subsonic area of Ẽ > 0,

and it can also be proved that Ẽ(n) is unique in the other three regions.

Step 3. In this part, we will prove Ẽ(n) ∈ C1. In order to find the possible
convergence slope of the trajectory in advance, first assume

lim
n→J

Ẽ(n)

n− J
= lim

n→J
Ẽ′(n) = m0.

Take limits on both sides of (2.11); it gives

m0 = f(J) · 1

m0
+

α

J
.(2.16)

A simple calculation shows that

m0 =
α±

√
α2 + 8(J − b)

2J
.

Here we only take the possible slope of m0 =
α+

√
α2+8(J−b)

2J because now we only

consider the part of Ẽ > 0 and n > J .
Next, we prove that Ẽ(n) will converge to the singular point with the slope of

m0. It only needs to illustrate that for all ε > 0 there exists δ0 > 0 such that when
n ∈ (J, J + δ0), this trajectory will converge to the region bounded by the line l+0 and
l−0 , where l+0 and l−0 are the lines through the singular point (J, 0) with the slope of
m0 + ε and m0 − ε, respectively. Next, we argue this by contradiction.

Suppose that the trajectory Ẽ(n) does not converge to this region; that is, there
exists ε0 > 0 for all δ > 0 when n ∈ (J, J + δ), and there will always exist a point
on this trajectory above the line l+0 or below the line l−0 . Assume this kind of points
are above the straight line l+0 . Since f(n) > 0 when n → J+, then from (2.11),
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Fig. 4. Phase plane of (n, Ẽ) in the case of the supersonic doping profile.

Ẽ′(n) will decrease with the increasing of the value of Ẽ
n−J . That is, there exists

δ = δ0 > 0 when n ∈ (J, J + δ0), and we have Ẽ′(n) < m0 for Ẽ
n−J > m0 + ε0.

Therefore, Ẽ′(n) < m0 < Ẽ
n−J at this kind of point, and it is easy to see that the

value of Ẽ
n−J will increase after this point as n → J+. The tracing back directions of

the trajectories, which above the line l+0 or below the line l−0 , are shown in Figure 4.

(a) If { Ẽ
n−J } is unbounded, i.e., limn→J

Ẽ
n−J = +∞, then by taking the limit on

both sides of (2.11) we get

lim
n→J

Ẽ′(n) =
α

J
̸= lim

n→J

Ẽ

n− J
,

which is a contradiction.
(b) If { Ẽ

n−J } has an upper bound, then according to the monotone bounded theorem,

we know that { Ẽ
n−J } has a limit. Set limn→J

Ẽ
n−J = m̄0. It is obvious m̄0 > m0.

So, if the limits on both sides of (2.11) are taken, then limn→J Ẽ′(n) exists with

limn→J Ẽ′(n) < m0; i.e.,

lim
n→J

Ẽ′(n) ̸= lim
n→J

Ẽ

n− J
,

which is also a contradiction. Furthermore, if there always exist points of the tra-
jectory Ẽ(n) that are below the straight line l−0 , the method of proof is similar. In

conclusion, the trajectory Ẽ(n) will trace back to the singular point with the slope

of m0; i.e., limn→J
Ẽ(n)
n−J = m0. So, taking the limit on both sides of (2.10), we have

limn→J Ẽ′(n) = m0, i.e., Ẽ(n) ∈ C1.

Step 4. We will further prove that Ẽ(n) ∈ C2. According to Step 3,

lim
n→J

Ẽ′(n) = lim
n→J

Ẽ(n)

n− J
= m0 ̸= 0.

In view of the form of (2.10) and (2.11), we may consider Ẽ(n)
n−J as a whole. Denote

B̃(n) :=
Ẽ(n)

n− J
.(2.17)
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It is obvious that limn→J B̃(n) = m0, i.e., B̃(n) ∈ C0. From (2.11) and (2.17), we can

see that if B̃(n) ∈ C1, then Ẽ(n) ∈ C2. Thus, let us prove that B̃(n) ∈ C1. Firstly,
through (2.17),

Ẽ′(n) = (n− J)B̃′(n) + B̃(n),

and (2.11) is transformed into

Ẽ′(n) = f(n) · 1

B̃(n)
+

αJ

n2
,(2.18)

and

B̃′(n) = [Ẽ′(n)− B̃(n)] · 1

n− J
.(2.19)

Since Ẽ(n) ∈ C1, then by taking the limits on both sides of (2.17), we have

[Ẽ′(n)− B̃(n)] |n=J= 0.(2.20)

According to (2.19) and (2.20), it follows

B̃′(n) = {Ẽ′(n)− B̃(n)− [Ẽ′(n)− B̃(n)] |n=J} ·
1

n− J
.

So, from (2.18) we derive

B̃′(n) =

{
f(n) · 1

B̃(n)
+

αJ

n2
− B̃(n)−

[
f(n) · 1

B̃(n)
+

αJ

n2
− B̃(n)

]
|n=J

}
· 1

n− J
.

A simple calculation shows that

B̃′(n) = −

[
f(n)

B̃(n)B̃(J)
+ 1

]
· B̃(n)− B̃(J)

n− J
+

1

B̃(J)
· f(n)− f(J)

n− J
+

αJ
n2 − αJ

n2 |n=J

n− J
.

Obviously, some parts of the equation will not generate singularities, so we set

R(n,m0) =
1

B̃(J)
· f(n)− f(J)

n− J
+

αJ
n2 − αJ

n2 |n=J

n− J
.

Therefore,

B̃′(n) = −

[
f(n)

B̃(n)B̃(J)
+ 1

]
· B̃(n)− B̃(J)

n− J
+R(n,m0).(2.21)

Since

lim
n→J

B̃(n) = B̃(J) = m0,

we need to consider

B̄1(n) := B̃(n)− B̃(J),(2.22)
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and it only needs to prove that B̄1(n) ∈ C1. From (2.21),

B̄′
1(n) = −

[
f(n)

B̃(n)B̃(J)
+ 1

]
· B̄1(n)

n− J
+R(n,m0).(2.23)

The next proof follows Step 3. Suppose in advance that

lim
n→J

B̄1(n)

n− J
= lim

n→J
B̄′

1(n) = m1.

Then taking limits on both sides of (2.23), we have

m1 = −

[
f(J)

B̃(J)2
+ 1

]
m1 +R(J,m0),

where

R(J,m0) =
1

B̃(J)
· f ′(n) |n=J +

(
αJ

n2

)′

|n=J .

Denote

g(k) := −

[
f(J)

B̃2(J)
+ k

]
.

Since g(1) < 0, we have m1 = R(J,m0)
1−g(1) .

Next, let us prove that B̄1(n) will converge to the singular point with the slope of
m1. The proof process here is almost exactly the same as Step 3; the major difference
is that Ẽ′(n) and B̄′

1(n) satisfy different relations, but we can easily find that the

key to Step 3 is that Ẽ′(n) decreases with the increase of the value of Ẽ
n−J when

n → J+. For this case, according to g(1) < 0, we can still get the same conclusion
from (2.23). Therefore, through the local analysis on the (n, B̄1)-phase plane, we can

prove B̄1(n) ∈ C1, i.e., Ẽ(n) ∈ C2.

Step 5. Next, we prove that Ẽ(n) ∈ C∞. From Step 4 it is easy to see that we

just need to prove B̃(n) ∈ C∞. According to induction, let us assume that B̃(n) ∈ Ck

and go to prove B̃(n) ∈ Ck+1. Set

B̃(j)(J) = mj , (j = 0 . . . k).

From (2.17),

Ẽ(k)(n) = (n− J)B̃(k)(n) + kB̃(k−1)(n),

Ẽ(k+1)(n) = (n− J)B̃(k+1)(n) + (k + 1)B̃(k)(n),

and thus

B̃(k)(n) =
[
Ẽ(k)(n)− kB̃(k−1)(n)

]
· 1

n− J
,(2.24)

B̃(k+1)(n) =
[
Ẽ(k+1)(n)− (k + 1)B̃(k)(n)

]
· 1

n− J
.(2.25)
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Since B̃(n) ∈ Ck, by taking the limits on both sides of (2.24), through Hospital’s rule,[
Ẽ(k+1)(n)− (k + 1)B̃(k)(n)

]
|n=J= 0.(2.26)

Thus, from (2.25) and (2.26), it follows

B̃(k+1)(n) =
{
Ẽ(k+1)(n)− (k + 1)B̃(k)(n)−

[
Ẽ(k+1)(n)− (k + 1)B̃(k)(n)

]
|n=J

}
· 1

n− J
.

According to (2.18), we have

B̃(k+1)(n) =

{(
f(n) · 1

B̃(n)
+

αJ

n2

)(k)

− (k + 1)B̃(k)(n)

−

(f(n) · 1

B̃(n)
+

αJ

n2

)(k)

− (k + 1)B̃(k)(n)

 |n=J

}
· 1

n− J
.

(2.27)

Now, our goal is to extract B̃(k)(n)−B̃(k)(J)
n−J from the right side of (2.27). A simple

calculation shows that

B̃(k+1)(n) =

[
−f(n) · B̃

(k)(n)

B̃2(n)
+ f(J) · B̃

(k)(J)

B̃2(J)

]
· 1

n− J
− (k + 1) · B̃

(k)(n)− B̃(k)(J)

n− J

+

[(
αJ

n2

)(k)

−
(
αJ

n2

)(k)

|n=J

]
· 1

n− J
+ L

(
n, B̃(n), B̃(1)(n), . . . , B̃(k−1)(n)

)
− L(J,m0,m1, . . . ,mk−1),

(2.28)

where

L
(
n, B̃(n), B̃(1)(n), . . . , B̃(k−1)(n)

)
=

[
f(n)

B̃(n)

](k)
+ f(n) · B̃

(k)(n)

B̃2(n)

and

L (J,m0,m1, . . . ,mk−1) =

[
f(n)

B̃(n)

](k)
|n=J +f(J) · B̃

(k)(J)

B̃2(J)
.

Simplify further the first term in (2.28) as follows:

[
−f(n) · B̃

(k)(n)

B̃2(n)
+ f(J) · B̃

(k)(J)

B̃2(J)

]
· 1

n− J

=

[
−f(n) · B̃

(k)(n)

B̃2(n)
+ f(n) · B̃

(k)(J)

B̃2(n)
− f(n) · B̃

(k)(J)

B̃2(n)
+ f(J) · B̃

(k)(J)

B̃2(J)

]
· 1

n− J

= − f(n)

B̃2(n)
· B̃

(k)(n)− B̃(k)(J)

n− J
− B̃(k)(J) ·

[
f(n)

B̃2(n)
− f(J)

B̃(2)(J)

]
· 1

n− J
.

(2.29)

By (2.28) and (2.29), it holds that

B̃(k+1)(n)=−

[
f(n)

B̃2(n)
+ (k + 1)

]
B̃(k)(n)− B̃(k)(J)

n− J
+R

(
n, B̃(n), . . . , B̃(k)(n),m0, . . . ,mk

)
.
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Since

lim
n→J

B̃(k)(n) = B̃(k)(J) = mk,

denote

B̄k+1(n) := B̃(k)(n)− B̃(k)(J).

Then

B̄′
k+1(n) = −

[
f(n)

B̃2(n)
+ (k + 1)

]
B̄k+1(n)

n− J
+R

(
n, B̃(n), . . . , B̃(k)(n),m0, . . . ,mk

)
.

(2.30)

In order to get the possible convergence slope of B̄k+1(n) in advance, assume that

lim
n→J

B̄k+1(n)

n− J
= lim

n→J
B̄′

k+1(n) = mk+1.

Taking limits on both sides of (2.30), we have

mk+1 = −

[
f(J)

B̃2(J)
+ (k + 1)

]
mk+1 +R(J,m0, . . . ,mk).

Since g(k + 1) < 0 for all k ∈ N+, then use the same method in Step 4; we can get

the conclusion that B̄k+1(n) ∈ Ck+1, i.e., B̃(n) ∈ Ck+1.

The above proof is done in the region of Ẽ > 0, n > J . In the other three
parts, the method of the proof is the same, and the C∞-smooth transonic trajectory
solution will be proved. Moreover, we can obtain that the derivatives of the trajectory
in parts Ẽ > 0, n > J and Ẽ < 0, n < J are the same, and the derivatives of the
trajectory in parts Ẽ > 0, n < J and Ẽ < 0, n > J are also the same. Thus, two
smooth trajectories passing through the singular point (J, 0) are obtained, one of
which is from the subsonic region to the supersonic region, and another one is from
the supersonic region to the subsonic region.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.1 and Lemma 2.2, we have got two C∞-
smooth transonic trajectories Ẽ(n). Then the proof method for the smoothness of
n(x) is the same as α = 0, which is given in subsection 2.1, so we obtain two smooth
transonic solutions of the original system (1.5). The proof is complete.

3. The case of b > J (subsonic doping profile). When the doping profile is
subsonic, the corresponding analysis of the system (1.5) becomes much more compli-
cated. As in subsection 2.2, starting from (2.8) and (2.9), we still analyze the trend

of the trajectory in the (n, Ẽ)-phase plane. It is easy to obtain that the equilibrium
point (b, 0) is the saddle point through calculation, but when α takes different values,
the phase diagram will be completely different. We mainly study the solution of the
system when α is sufficiently small, and α is sufficiently large. For α is sufficiently
small, we may take α = 0 to see the phase diagram, which is shown in Figure 5. For α
is large, we show the phase diagram of system (1.5) after transformation in Figure 6.
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Fig. 5. Phase plane of (n,E) with α = 0, b = 1.5, and J = 1 in the case of a subsonic doping
profile. The red ∗ is the singular point (1, 0); the black ∗ is the equilibrium point (1.5, 0).
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Fig. 6. Phase plane of (n, Ẽ) with α = 2, b = 1.5, and J = 1 in the case of a subsonic doping
profile. The red ∗ is the singular point (1, 0); the black ∗ is the stable point (1.5, 0).

3.1. α ≥ 0, and α is sufficiently small.

Lemma 3.1. Let the doping profile be subsonic, i.e., b > J ; then for α ≥ 0 and α
is sufficiently small, (2.10) has no continuous transonic trajectory.

Proof. First, we analyze the general trend of the trajectory, which starts from
the part of n > J on the singularity line. From (2.10), when Ẽ = 0 and n > J , we

can get Ẽ′(n) = −∞. Since b > J , then, there exists δ0 > 0 such that f(n) < −C

for n ∈ (J, J + δ0); i.e., Ẽ
′(n) < 0 as long as Ẽ

n−J < CJ
α . Then, there exists a line l̄

through the singular point with the slope of CJ
α , which will be large when α is small

such that Ẽ′(n) < 0 for the trajectory in the region bounded by the three lines l̄, lδ0 ,

and Ẽ = 0. These trajectories must intersect with the line l̄. As shown in Figure
7, they can not trace back to the singular point because Ẽ′(n) < α

J , which is small
enough for this case.

3.2. The Case: α > 0, and α is sufficiently large.

Lemma 3.2. Let b > J , α > 0, and α is large enough; (2.10) has infinitely
many continuous transonic trajectories. Moreover, one of the transonic trajectory
is C∞ smooth, and the rest of the transonic trajectories are also C∞ smooth when
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Fig. 7. Phase plane of (n, Ẽ) in the case of a subsonic doping profile.

h(α, b, J)∈̄Z, and they are Cm smooth when h(α, b, J) ∈ Z, where h(α, b, J) =
8(b−J)

[α−
√

α2−8(b−J)]2
and m = 8(b−J)

[α−
√

α2−8(b−J)]2
− 1.

Proof. When the value of α becomes large, the phase diagram of the system
changes as shown in Figure 6. For this case, in addition to phase-plane analysis,
the local manifold analysis is used to illustrate the smoothness of these transonic
solutions. Next, we divide our proof into three steps.

Step 1. We prove the existence of continuous transonic trajectories. Without
a loss of generality, we only need to prove that there will exist trajectories passing
through the singular point (J, 0) in the area of Ẽ > 0 and n > J . From (2.11),

Ẽ′(n) = α
J , which is large enough when the trajectory starts from the sonic line of

Ẽ > 0. As shown in Figure 8, we may as well assume that for α large enough there
exists a straight line l̃ passing through the singular point with a large slope such that
there exists δ0 > 0 for n ∈ (J, J + δ0); all the trajectories starting from the Ẽ > 0
part of the sonic line will all be above this line. Then, if this fact holds, we consider
the point A(n, Ẽ(n))(n ∈ (J, J + δ0)) below this line. First, the trajectory through

the point of A cannot trace back to the sonic line of Ẽ > 0. Also, this trajectory
cannot trace back to the part of Ẽ = 0 for n > J either because Ẽ′(n) = −∞ when
the trajectory starts from the singularity line of n > J .
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Fig. 8. Phase plane of (n, Ẽ) in the case of a subsonic doping profile.

D
ow

nl
oa

de
d 

08
/3

0/
21

 to
 1

42
.1

57
.1

92
.0

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMOOTH TRANSONIC STEADY STATES 4925

Now, we only need to prove the existence of this kind of straight line l̃. From
(2.11), we know there exists δ0 > 0 such that αJ

n2 > α
J − 1

2 for n ∈ (J, J + δ0). When
n ∈ (J, J + δ0), f(n) has no singularity, and we might as well assume that |f(n)| < C.

Then we can get |f(n)/ Ẽ
n−J | <

1
2 for Ẽ

n−J > α
J − 1 with a α large enough. Therefore,

there exists δ0 > 0 and α large enough that, if the date Ẽ
n−J > α

J − 1, we have

Ẽ′(n) > α
J − 1 for n ∈ (J, J + δ0). That is, the slope of the line l̃ we should choose

can be α
J − 1 for α large enough.

Step 2. Next, we prove that this kind of Ẽ(n) of the trajectories obtained in the
step 1 is C1 smooth. Compared with the previous proof method, we need to find the
slope of these trajectories, convergence in advance. Suppose that

lim
n→J

Ẽ′(n) = lim
n→J

Ẽ

n− J
= s.

Then, take limits on both sides of (2.11); we have

s = f(J) · 1
s
+

α

J

from which two values are obtained:

S0 =
α+

√
α2 − 8(b− J)

2J
,

and

s0 =
α−

√
α2 − 8(b− J)

2J
.

It is obvious that S0 tends to infinity, and s0 tends to zero as α tends to infinity.
Next, we prove that Ẽ(n) will trace back to the singular point with S0 or s0 as the
slope.

First of all, let us prove that there are infinitely many trajectories that trace
back to the singular point with s0 as the slope. We still do local analysis near the
singular point. As shown in Figure 9, we may as well make two straight lines L−

0

and T−
0 , which are through the singular point with S0 − ε1 and s0 − η1 as the slopes,

respectively. First, we prove that there exists δ > 0 such that for n ∈ (J, J + δ) these
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Fig. 9. Phase-Plane of (n, Ẽ) in the case of subsonic doping profile.
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trajectories, which pass through the line of L−
0 , will converge and stay in the region

between the line L−
0 and T−

0 when n → J+. Suppose that one of the trajectories

intersects with the line L−
0 at point A0(n0, Ẽ(n0)). Then we analyze the trend of this

trajectory and compare the magnitude of Ẽ′(n0) and
Ẽ

n0−J for this aim. From (2.11),

Ẽ′(n0) = f(n0) ·
1
Ẽ

n0−J

+
αJ

n2
0

.

Then, we just need to judge the sign of

Ẽ

n0 − J
−

[
f(n0) ·

1
Ẽ

n0−J

+
αJ

n2
0

]
.

Since Ẽ
n0−J > 0, it is equivalent to judge the sign of(

Ẽ

n0 − J

)2

− αJ

n2
0

· Ẽ

n0 − J
− f(n0).

Consider the following quadratic manifold:

F (z;n) := z2 − αJ

n2
z − f(n).(3.1)

For F (z, n) = 0, there are two roots:

z1(n) =
1

2

(
αJ

n2
−
√

α2J2

n4
+ 4f(n)

)
,

and

z2(n) =
1

2

(
αJ

n2
+

√
α2J2

n4
+ 4f(n)

)
.

It is obvious that z1(J) = s0 and z2(J) = S0; i.e., as n → J+, it holds z1(n) → s0 and
z2(n) → S0. Then, for z = S0 − ε1, there exists δ1 > 0 such that F (z;n) < 0 for n ∈
(J, J + δ1). In the same way, for z = s0−η1, there exists δ2 > 0 such that F (z;n) > 0
for n ∈ (J, J + δ2). Thus δ = min{δ1, δ2} is satisfied; that is, these trajectories will
converge and stay in this region, which will trace back to the singular point.

Next, make two straight lines, M+
0 and M−

0 , which are through the point (J, 0)
with the slope of s0+η2 and s0−η2. We prove that there exists δ′ < δ such that for n ∈
(J, J+δ′), the above trajectories will converge and stay in the region bounded by M+

0

and M−
0 for any fixed η2 with η2 ≤ η1. Suppose that when n → J+, there always exist

some points on the trajectory between L−
0 and M+

0 . Then, according to the discussion
of the manifold, the trajectory cannot intersect with the straight line M+

0 because if
they intersect with M+

0 they will enter and stay under M+
0 for a small δ1. That is,

there exists δ1 > 0 when n ∈ (J, J + δ1); the trajectory will always stay between the
straight line L−

0 and M+
0 . Therefore, we can get F (Z;n) < 0 for n ∈ (J, J + δ1); i.e.,

in the process of trajectory tracing, the value of Ẽ
n−J will be monotonically decreasing,

which is the slope of the line connecting the point on the trajectory and the singular

point. It is easy to see Ẽ
n−J has a lower bound, and then it has a limit. Set

lim
n→J

Ẽ

n− J
= s̄0,
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and it is obvious that s̄0 > s0; then according to (2.11), Ẽ′(n) has a limit when
n → J+ and

lim
n→J

Ẽ′(n) < s̄0,

namely,

lim
n→J

Ẽ′(n) ̸= lim
n→J

Ẽ(n)

n− J
,

which is a contradiction. Similarly, the trajectory must also converge above the line
M−

0 . Then, according to the arbitrariness of η2, these trajectories will eventually
trace back to the singular point with the slope of s0.

Now we will continue to prove that there will be a unique trajectory going back to
the singular point with the slope of S0. From the above analysis, we have known that
there will be infinitely many trajectories that trace back to the singular point with
the slope of s0. These trajectories will intersect with the straight line lδ : n = J + δ.
We may as well mark these intersections as Bn(J + δ, bn) after choosing a sequence,
where {bn} is monotonically increasing and has an upper bound. According to the
monotone bounded theorem, the sequence {bn} has a limit. Set

lim
n→∞

bn = b0.(3.2)

Let Tb denote the trajectory through the point B0(J + δ, b0). Now we just need to
prove that Tb will go back to the singular point with the slope of S0.

It is clear that Tb must trace back to the singular point. If not, Tb will go back to
the sonic line of Ẽ > 0, which contradicts with (3.2). Also, the trajectory Tb can’t go
back to the singular point with the slope of s0. Otherwise, if the trajectory Tb goes
back to the singular point with the slope of s0, then there is still a trajectory with
the slope of s0 going back to the singular point above the trajectory Tb due to the
former discussion. This would also contradict with (3.2).

Thus, when n → J+, the trajectory Tb will always be above the straight line
L−
0 . Otherwise, if there is always a point on the trajectory below the straight line

L−
0 , then when n is close enough to J , the trajectory will enter and stay below the

straight line L−
0 , and finally it will trace back to the singular point with s0 as the

slope. Similarly, when n → J+, the trajectory Tb can’t be above the straight line L+
0 .

Otherwise, according to the manifold analysis, the trajectory will always be above the

straight line L+
0 when n → J+. Thus, the value of Ẽ

n−J will increases monotonically,

where Ẽ
n−J denotes the slope of the line connecting the point on the trajectory and

the singular point.

(a) If { Ẽ
n−J } is unbounded, i.e., limn→J

Ẽ
n−J = +∞, then taking limits on both sides

of (2.11), we have

lim
n→J

Ẽ′(n) =
α

J
̸= +∞,

which is a contradiction.
(b) If { Ẽ

n−J } has an upper bound on the basis of the monotone bounded theorem,

then { Ẽ
n−J } has a limit. Set

lim
n→J

Ẽ

n− J
= S̄0.
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It is obvious that S̄0 > S0; then Ẽ′(n) has a limit and

lim
n→J

Ẽ′(n) < S̄0,

namely,

lim
n→J

Ẽ′(n) ̸= lim
n→J

Ẽ(n)

n− J
,

which is also a contradiction.
Therefore, according to the arbitrariness of ε, we prove that Tb will eventually

trace back to the singular point with the slope of S0.
Finally, we prove this kind of trajectory is unique. In fact, if there are two trajec-

tories Tb and T ′
b satisfying the conditions, that is, (2.9) has two trajectory solutions,

Ẽ1(n), Ẽ2(n), and they satisfy

lim
n→J

Ẽ′
1(n) = lim

n→J
Ẽ′

2(n) = S0,(3.3)

then assume that Ẽ1(n) > Ẽ2(n), n ∈ (J, J + ε0); from (2.17), we have B̃1(n) =
Ẽ1(n)
n−J

and B̃2(n) =
Ẽ2(n)
n−J . Set

B̄(n) = B̃1(n)− B̃2(n),

and it is obvious that

B̄(n) > 0, n ∈ (J, J + ε0).(3.4)

From (2.19),

B̄′(n) = B̃′
1(n)− B̃′

2(n) =

(
−f(n) · 1

B̃1(n)B̃2(n)
− 1

)
· B̃1(n)− B̃2(n)

n− J
.

Since

lim
n→J

B̃1(n) = lim
n→J

B̃2(n) = S0,

thus for all ε > 0, there exists δ > 0 such that for n ∈ (J, J + δ) it holds B̃1(n) ∈
(S0 − ε, S0 + ε) and B̃2(n) ∈ (S0 − ε, S0 + ε). Therefore, as long as ε0 < δ, we can get

B̃1(n)B̃2(n) > (S0 − ε)2, n ∈ (J, J + ε0).

Since S0 is large enough, then it must hold

B̄′(n) < 0, n ∈ (J, J + ε0).(3.5)

Thus, from (3.4) and (3.5) we deduce

lim
n→J

B̄(n) > 0,

that is,

lim
n→J

Ẽ1(n) > lim
n→J

Ẽ2(n),

which contradicts with (3.3).
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Step 3. Next, we need to discuss further the regularity of these trajectories. First
of all, according to the proof process of Lemma 2.2, we can always get g(k) < 0 when

B̃(J) is sufficiently large. Thus, one can easily know that the trajectory tracing back
to the singular point with the slope of S0 is C∞ smooth, and we omit the proof here.
Then we mainly discuss the regularity of the family of trajectories that trace back to
the singular point with s0 as the slope. Without a loss of generality, we just need
to choose one of the trajectories to prove. Let us still use Ẽ(n) to represent this
trajectory.

For clarification, we continue to prove Ẽ(n) ∈ C2. It is the same as the proof of
Lemma 2.2 except for a slight difference here. By the transforming of (2.17)–(2.22),
we still have

B̄′
1(n) = −

[
f(n)

B̃(n)B̃(J)
+ 1

]
· B̄1(n)

n− J
+R(n, s0),(3.6)

where

R(n, s0) =
1

B̃(J)
· f(n)− f(J)

n− J
+

αJ
n2 − αJ

n2 |n=J

n− J
.

We have known that B̄1(n) ∈ C0 and limn→J B̄1(n) = s0. Next, we will prove
B̄1(n) ∈ C1. In order to obtain the slope of trajectory in advance, assume that

lim
n→J

B̄′
1(n) = lim

n→J

B̄1(n)

n− J
= s1.

Then take the limits on both sides of (3.6); it follows

s1 = g(1)s1 +R(J, s0).

It is easy to see that g(1) > 1 when B̃(J) is sufficiently small. Next, we just need
to prove that this trajectory will converge to the singular point with the slope of
s1. Still do the local manifold analysis in the (n, B̄1)-phase plane. As shown in
Figure 10, the trajectory is making two straight lines T+

1 and T−
1 pass through the

singular point, where the slope of T+
1 is s1 + ε1 and the slope of T−

1 is s1 − ε1.
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Fig. 10. Phase plane of (n, Ẽ) in the case of a subsonic doping profile.
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Then, we analyze the trend of the trajectory above T+
1 and below T−

1 for which it

needs to compare B̄′
1(n) and B̄1

n−J , that is, to judge the sign of B̄1

n−J − B̄′
1(n); i.e.,

B̄1

n−J − {−[ f(n)

B̃(n)B̃(J)
+ 1] · B̄1(n)

n−J + R(n, s0)} for B̄1

n−J > s1 + ε1 or B̄1

n−J < s1 − ε1 as

n → J+. To do this, introduce the following manifold:

G(z;n) =: z −

[
−

(
f(n)

B̃(n)B̃(J)
+ 1

)]
· z −R(n, s0).

For G(z;n) = 0, we have

z(n) =
R(n, s0)

1−
[
−
(

f(n)

B̃(n)B̃(J)
+ 1
)] ,

and it is obvious that z(J) = s1; i.e., z(n) → s1 for n → J+. Thus, for z ≥ s1+ε1 there
exists δ1 > 0 such thatG(z;n) < 0 with n ∈ (J, J+δ1). In the same way, for z ≤ s1−ε1
there exists δ2 > 0 such that G(z;n) > 0 for n ∈ (J, J + δ2). Take δ = min{δ1, δ2},
and then for n ∈ (J, J + δ) we have B̄′

1(n) >
B̄1

n−J for B̄1

n−J ≥ s1+ ε1 and B̄′
1(n) <

B̄1

n−J

for B̄1

n−J ≤ s1− ε1. Thus, for this reason, as n → J+, this trajectory will converge and

stay in the region bounded by T+
1 and T−

1 . Otherwise, if there are always points on
this trajectory above the straight line T+

1 as n → J+, then there must exist δ0 > 0
such that the trajectory will always above the straight line T+

1 for n ∈ (J, J + δ0). It

is easy to see that the value of B̄1

n−J will also decrease monotonically. Set

lim
n→J

B̄1

n− J
= s̄1.

It is obvious that s̄1 > s1; then

lim
n→J

B̄′
1(n) < s̄1,

namely,

lim
n→J

B̄′
1(n) ̸= lim

n→J

B̄1(n)

n− J
,

which is a contradiction. In the same way, we can also prove that there will not always
exist points on this trajectory below the line T−

1 as n → J+. Therefore, according to
the arbitrariness of ε1, we prove that this trajectory will eventually trace back to the
singular point with the slope of s1, i.e., B̄1(n) ∈ C1, and then Ẽ(n) ∈ C2.

Next, we discuss the higher regularity of Ẽ(n). According to Step 5 in the proof
of Lemma 2.2, we also have

B̄′
k(n) = −

(
f(n)

B̃2(n)
+ k

)
B̄k(n)

n− J
+R

(
n, B̃(n), . . . , B̃(k−1)(n), s0, . . . , sk−1

)
.

We find that if

g(k) = −

(
f(J)

B̃2(J)
+ k

)
∈̄Z, k = 1, 2, . . . ,
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namely,

h(α, b, J) := − f(J)

B̃2(J)
=

8(b− J)

[α−
√
α2 − 8(b− J)]2

∈̄Z, k = 1, 2, . . . ,

then, according to the above method and the proof method of Lemma 2.2, we can
continue the above discussion and finally get that B̃(n) ∈ C∞, i.e., Ẽ(n) ∈ C∞. It
should be noticed, however, that when h(α, b, J) ∈ Z, there will be k ∈ N such that
g(k) = 1. Then we cannot calculate sk in advance. But for this case, we can compute
that B̄1(n) can reach to Cm−1, where

m =
8(b− J)

[α−
√
α2 − 8(b− J)]2

− 1,

that is, Ẽ(n) ∈ Cm. Thus the proof of Lemma 3.2 is obtained.

Now, by Lemma 3.1 and Lemma 3.2, we can prove Theorem 1.2.

Proof of Theorem 1.2. By the same method of Lemma 3.1 and Lemma 3.2, we can
prove that there are also two classes of trajectories in the supersonic side, which pass
through the singular point, and their slopes are also s0 and S0, respectively. Thus, we
get two classes of smooth trajectories, which cross the sonic point from the supersonic
region to the subsonic region. By the discussion of regularity between the solution of
the original system (1.5) and the trajectory, we can obtain these conclusions.
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