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1. LetF(x,y) = (4x3y? — 2xy3)i + 2x*y — 3x%y? + 4y?)j.
a). Show that F(x,y) is conservative by finding the potential curves.

Solution

o

P In fact,

Firstly we check with the necessary condition of conservative field: E;—il =

OF, 0(4x3y? — 2xy?) 0(2x*y — 3x%y? + 4y3) OF,

—1_ = 8x3y — 6xy? = = 5

dy dy dx dx
So, the vector field F(x, y) might be conservative. Now we are looking for a potential curve ¢ (x,y) such that
V¢ = F, so then F(x, y) is conservative. Let ¢ be:

d
{(a = F1 = 4-x3y2 — 2xy3 eee eee aee see tes tee seseee sus ane (1)
0

Integrating (1) with respect to x yields
d(x,y) = [ (4x3y? — 2xy®)dx = x*y? — x?y3 + C,(y), for some integral constant C; (y).
Differentiating the above equation with respect to y, we have

do ,
i 2x*y — 3x2y?% + C{(y).

Comparing it with (2), we have C{(y) = 4y3, which gives C;(y) = y* + C. Thus, the potential curves are
P(x,y) = x*y? —x?y* +y* + C,

which are smooth in x and y, Therefore, the vector field is conservative.

b). Calculate fC F - dr, where C is the curve given by r(t) = (t + sin mtt) i + (2t + cosnt)j for
0<t<1.

Solution

Since the vector field is conservative, so the line integral is independent of the path, namely

j F-dr= f Vo dt = p(x(1), (1)) — p(x(0), y(0))
C C

=My =P+ =1 - My - 2B+ yH(E=0)
= ()’

where < x(1),y(1) >=< 1,1 > and < x(0),y(0) >=< 0,1 >.
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2. a).Findcurl Fand div F, if F(x,y,z) =e *sinyi+e ™Vsinzj+ e *sinx k.
Solution
i j Kk
curl F = Ox dy 0, =—eYcoszi—e?cosxj—e ¥cosyk.

e *siny e Vsinz e Zsinx

div F== 0,(e™*siny) + d, (e Vsin z) + 9,(e ?sinx) = —e *siny — e Vsinz — e *sinx.

b). Show that there is no vector field G such that curl G = 2x i+ 3yzj— xz? k.
Solution

If there is some vector field G such that curl G = 2x i+ 3yzj — xz? K, then

V-curl G = 0,(2x) + 0,(3yz) + 9,(—x2z%) = 2+ 33z — 2xz # 0.
However, by the identity: V - curl G = 0 for any vector field G, it is a contradiction. So, there is no vector field G
suchthat curlG=2xi+3yzj— xz?Kk.
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3. Iff isaharmonic function, that is, V2f = f,, + f,, = 0, show that the line integral fC fydx — fidyis
independent of path C in any simple region D.

Solution 1

Let C be any path from point A(x4, y;) to point B(x,,y,) inany simple region D, and

C, =BE + EA be the lines with the vertical line BE = {x =x,,y, <y < y,}and the
horizontal line EA = {y = y1,x; < x < x,}, and D; be the region bounded by the curves
C and C,, See the graph below. Note that f is a harmonic function: V2f = f,, + f,,, = 0,

by Green’s Theorem, we have

fydx — fody = f f [0.(~f,) = 9,(f )]dA = — f f [fye +f,, 1dA = 0.
CUC, Dy Dy

This gives

f fydx — frdy = fydx — f,dy = constant
c

_CZ

Since C is arbitrarily given, the above line integral is independent of path C in any simple region D.

Solution 2

Let C be a given path in any simple region D. We rewrite

Jo hdx—fudy = [. <f),—fx ><dx,dy >= [, F-dr
where F =< f,,, —f, > is the vector field. Now we are going to prove it to be
conservative by finding its potential curves, so then the line integral [ ¢ F-dris

independent of the path C.

First of all, we check with the necessary condition. Note that
0F, _0(fy) _ 0F, _d(=f)
oy P wm T T




, OF, _ OF
and fox + fyy =0, e, fyy = —fex, then 7= 22

Now we are looking for a smooth function ¢ (x, y) such that V¢p = F.
Let us solve the system

a
%:ﬂ:@
o (1)
ay 2 X
By integrating the first equation with respect to x, we have
¢(x,y) = [" (0, y)dx + C,() @

Differentiating (2) with respect to y, we have
0yp = [* fy (x,y)dx + €' () ®
Comparing (3) with the second equation of (1), we have
" fy . y)dx + 6/ 0) = —fe = [*(—f)x dx = [ —fixdx.
So,

G =-| Tyt | () dr = - | oy + fin)dx =0,

Namely, C;(y) = C; = Constant. Thus, we derive the potential curves of F:
x y
e = [ flundcr 6 == [ fandy+c,

Therefore, F is conservative, and the line integral fC F - dr is independent of the path C.

4. Evaluate [ V1+ x3 dx + 2xy dy, where C is the triangle with vertices (0,0), (1,0), (1,3).
C

Solution 1

Since [+/1+ x3 dx cannot be explicitly integrated, we have to use Green’s Theorem to evaluate
it. The region D of the triangle with vertices (0,0), (1,0) and (1,3) is expressed as
D={(xy)0<x<10<y<3x.}

So, the line integral is:

Jo Vi+x3 dx+2xydy = [[ [0,(2xy)— 9, (V1+x3)]dA

= f01 f03x2y dy dx = 3.



Solution 2
Notice that C = C; U C, U C3, where (C; is the line from the point (0,0) to (1,0) withy = 0,0 < x < 1,

C, is the line from the point (1,0) to (1,3) with x = 1,0 < y < 3, and Cs is the line from the point (1,3) to (0,0)
with y = 3x,0 < x < 1. So, the line integral is

f v1+x3 dx+2xydy=f Vv1+x3 dx+2xydy

Cc C1UCUC3

=f V143 dx+2xydy+f V143 dx+2xydy+f V1+x3 dx+2xydy
C1 C1 C3
1 3 0

=f\/1+x3 dx+f 2-1-ydy+f\/1+x3 dx + 2x(3x) 3dx
0 0 1
1 1 1

=f V1+x3 dx+y?|Ny =3) —y*2|_(y =0) —f v1+x3 dx—f 18x2dx
0 0 0

1 1
=f\/1+x3 dx+9—f\/1+x3 dx —6
0 0

= 3.

y‘

OF

C>
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5. Evaluate [, F - dS, where F(x,y,z) = x* i+ xyj+zkand S is the part of paraboloid z = x* + y?
below the plane z = 1 with upward orientation.

Solution
The 3-dimensioanl region D bounded by the paraboloid z = x? + y? below the plane z =1 is
D ={(x,y,2)|z = x* + y?, 0<z<1} = {(,60,2)|0<0 <2m, 0<r<i, z=r?).

By Divergence Theorem, we have

271' T
f er cos 8 + r3]drdf = L[5C059+4]d0_5'
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6. Evaluate [, curl F - dS, where F(x,y,z) = x*yzi+yz®j+ z%¢* kand S is the part of sphere
x% + y? + z? = 5 that lies above the plane z = 1 and S is oriented upward.

Solution
Let C be the boundary of the surface S: x? + y? + z2 = 5 onthe plane z = 1, namely, x? + y?> =4, z =1,

which can be represented in the vector form r(6) =< 2cos8,2sin 6,1 >,and dr =< —2sin6, 2 cos 8,0 > d6.
By Stokes’ Theorem, we have

.ff curlF-dSzjg F - dr
c

2T

< x%yz,yz?% z3e*Y > < —2sin6,2cosH,0 > db
0
2T

f *cos? 0 sin? O + 4 sin 6 cos H]dO
0

_ A

2

f 2%sin% 260 + 2sin 26]d6
0

2

Vs
[2(cos 46 — 1) + 2sin 20]d6

h
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7. Evaluate ff. F - dS,where F(x,y,z) = x*® i+ y®j+ 2% k and S is the surface of the solid bounded
by the cylinder x* + y2 =1 andthe planesz = 0, z = 2.

Solution

The 3-dimensioanl region D bounded by cylinder x?2 + y2 =1 andtheplanesz =0, z =2 is
D={(x,y,2)|0<x?4+y2<1,0<z<2} = {(0,2)|0<0<2m,0<r<1,0<z<2}

By Divergence Theorem, we have

ﬂs F-ds= ff div F dV = foz" _I: Lz[ax(x3) + 0, (y*) + 0,(z%)|rdzdrd6

2w 1 (2
= f j j 3(r3 + z%r)dzdrd6 = 11m.
o Jo Jo
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8. a). Find the eigenvalues and eigenvectors: y"' + 1y = 0,y'(0) =0, y'(L) = 0.

Solution

Let y = e¥*, then we have the following characteristic equation: y2 + 1 = 0.

When A < 0, the solutionis y = CleJWx + Cze‘m". From the boundary condition y'(0) = 0, y'(L) = 0, we
have C; = C, = 0, namely y = 0, the trivial solution, which is not the case we look for.

When A = 0, the solution is y = C;x + C,. The boundary y'(0) =0, y'(L) = 0 implies C; = 0,and y = C, for
arbitrary constant C, . So, A = 0 is one of the eigenvalues, and the corresponding eigenfunction is ¢y (x) = 1.

When 1 > 0, the solution is y = C; cos VA x + C, sinv/2 x. From the boundary condition y’(0) = 0, y'(L) = 0,

we have

which give C, = 0,and

Summary:

Eigenvalues:

Eigenfunctions :

—C,V2AsinVAx + C,VAcosVAx =0 forx =0,

—C,VAsinVAx + C,VAcosVAx =0 forx =L,

nm?

A= () = cos = x, n=123
=z ,(,bx—cosLx,n— ,2,3,

2.2
dy=", n=0,123, -

L2

¢0(x) =1, and ¢n(x) = cosnL—nx, n=123:--
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8. b). Find the Fourier series for the function

fo=(1r TUEES) fa+w=fw.
Solution
The Fourier series is
f(x) = Z [an cos x + b, san—nx]

Note that f(x) is even, namely f(—x) = f(x). So, b, = 0,forn =1,2,3,-:-, and

aozzf f(x)dxzzf f(x)dxzif (2—x)dx =2,
-L 0 0
1 L nr 2 (L nm 2 (2 nw
a, :Z,[ f(x) cosTxdx :Zf f(x) cosTxdx =5f (2—x) cos7xdx
—L 0 0

2 - 2 nm "2 (x = 0) fZ( N 2  nm d
= —_— —SIin — = —_ — —Sln —
x nns 2 X |hax 0 nns 2 X ax

2

nmw 2 nm
—(2—x)—sm—x|"2 (x—O)— c057x|"2 (x=0)

W[cosnn —-1] = —W[(—l)" —1]

22 22 0, for n = even
forn = old.

n?m?’
So,

o8 1 (2n -
f(x)_1+?;(2n—1)2 cos > X.
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9. Solve the following initial-boundary value problem
U =5SUy,, 0<x<m, t>0,
u(0,t) =10, u(m,t) =20, t>0,
u(x,0) = cos2x — cos4x, x € [0,m].

Solution

Since the boundary is non-homogeneous, we introduce a function
10
v(x) = — x + 10, satifying the boundary condition v(0) = 10 and v(w) = 20.
s
Let w = u — v, then w satisfies
We =5w,,, 0<x<m, t>0,
w(0,t) =0, w(mt)=0, t>0,

10
w(x,0) = cos 2x — cos 4x - x—10=:f(x), x€[0,m].

Its solution is

[oe]

w(x, t) = Z cn exp(—

n=1

nn?a? ) si nmw
t) sin—x =
L2 L

— 2 .
¢, et sinnx,

s

1

S
Il

with

2 (t o 2 (T 10 _
Cn :Z,[ f(x) sin—-x dx = = f [cost—cos4x—?x— 10] sinnx dx
0 0

2 (™r10 . 20
- __f [—x+10] sinnx dx =
m)y Ln nim

So, the solution for the original IBVP is

2(=D"-1].

10 — 20 .
u(x, t) = v(x) + wix,t) = - x+ 10+ Z e [2(=D"—1] e~ 5"t sinnx.
n=1
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10. Consider the initial-value problem to the wave equation
Upp = AUy, — 00 < X < 00, t>0,

u(x,0) = f(x), —oo<x< oo,
u:(x,0) =0, —00 < x < 00,

which can be reduced to the form ug, = 0 by the change of variables ¢ = x — at, n = x + at.

a). Show that the solution can be written as

ux,t) = ¢(§) + ) = ¢(x — at) + Y(x + at),

where ¢ and i are the functions satisfying

() + () = f(x), —¢'(xX) +y'(x) = 0.

Solution

Letu = u(¢,n) withé = x —at, n = x + at. Then
U = ugde(§) + uy0:(§) = —aug + auy,,
Uy = Ot(—auf + aun) = 65(—au5 + aun)atf + 6,7(—au5 + aun)atn =a? (ugs — 2ugy + Upy),

Uy = ufax(f) + unax(f) = Uug + Uy,
Uyy = Ox(ug + un) = Og(uf + un)axf + an(ug + un)axn = Ugs + 2Ugy + Uy,

So, we have
0 = upe — AUy, = a®(ugg — 2ugy + Upy) — a2 (Uge + 2ugy + Uy, ) = —4a’ug,

namely,
ug,, =0.
Integrating it with respect to n, we have u; = € (§) for some integral constant C; (£). Integrating uz = C;(£) both

sides with respect to &, we then obtain

u(€,n) = € (O)dE = $(§) + (),
where ¢’ (§) = C1(&) and Y (n) is the integral constant. Thus, we have

u(x,t) =u€,n) = ¢ + v = ¢(x —at) + P(x + at)

satisfying the initial value conditions

u(x,0) =p) +y(x) =f),  ux0) =—ap'(x) +ap’'(x) = 0.
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10. b). By solving ¢ and ¢ in part a), thereby show the following D’ Alembert formula:

1
u(x,t) = 2 [f(x —at) + f(x + at)].
Solution
Since —¢'(x) + Y'(x) = 0, by integrating it with respect to x, we have

—¢(x) + Y(x) = C, for some constant C.
Combining it with ¢ (x) + Y (x) = f(x), we have

$() =51f() ~ €1, and $) =3[/ + ]
So, we have

u(x,t) = ¢p(x —at) + Y(x + at)

=%[f(x—at)—C]+%[f(x+at)+C]

_ %[f(x —at) + f(x +at)].



