Montreal Olympics Stadium


Full List of  Research Papers:

My research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)Fonds de recherche du Quebec Nature et technologies (FRQNT) , and Fédération de  cégeps (the former name: Cegeps International).  
      1. ``Phase transitions and partial differential equations of mixed type", NSERC Individual Discovery Grant 354724-2008,    years: 2008-2011. $42,000
      2. ``Damped Euler-Poisson equations and nonlinear diffusion waves", NSERC Individual Discovery Grant 354724-2011,   years: 2011-2016. $50,000
      3. ``Études des équations d'évolution non linéaires de la dynamique des fluides", FRQNT grant 164832,    years: 2012-2015.  $81,000
      4. ``Collaboration internationale de la recherche scientifique à Hong Kong et au Japon ", CEGEP International,   year: 2012-2013.  $3,000
      5. ``Collaboration internationale de la recherche scientifique à Italie ", CEGEP International,   year: 2013-2014.    $3,000
      6. ``Collaboration internationale de la recherche scientifique à Beijing ", Fédération de  cégeps, year: 2014-2015.      $3,000
      7. ``Stabilitédes ondes oscillatoires de déplacement pour les équations de réaction-diffusion à retardement ",  FRQNT grant 192571, years: 2015-2018. $108,000
      8. ``Non-monotone traveling waves for reaction-diffusion equations with delay", NSERC Individual Discovery Grant 354724-2016,    years: 2016-2021. $90,000

I also serve as the editorial board for some SCI journals:
Here is a full list of my publication. For reviews of my publications in Mathematical Reviews, look here. For citations of my publication, please look at Google Scholar.


A. Preprints / Submitted Papers

[83].  Convergence to rarefaction waves  for Cauchy problem to damped wave equations with time-gradually-degenerate diffusion (with Lili Fan, and Bruno Rubino),  in preparation.

[82].  
Large-time behavior of solutions for Cauchy problem to damped wave equations with time-gradually-degenerate diffusion (with Lili Fan, and Bruno Rubino),  in preparation.

[81].  
Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion (with Tianyuan Xu, Shanming Ji, and Jingxue Yin),  in preparation.

[80].  New chemotaxis model with density-dependent jump probability and quorum-sensing mechanisms (with Tianyuan Xu, Shanming Ji, 
Chunhua Jin and Jingxue Yin), submitted

[79].  Rui Huang, Chunhua JinM. Mei,  and  Jingxue Yin,  Existence and stability of traveling waves for degenerate reaction-diffusion equation with time delay,  submitted

[78].  Global stability of critical traveling waves with oscillations for time-delayed reaction-diffusion equations  (with Kaijun Zhang and Qifeng Zhang), submitted.


B. Accepted / Published Papers (all papers can be downloaded by clicking [PDF] at the end of each iterm)

[77].  J. Li, G. ZhangM. Mei i and K. Zhang, Steady hydrodynamic model of semiconductors with sonic boundary: (I) Subsonic doping profile,  SIAM J. Math. Anal.  in press [PDF]  arXiv:1610.09595v1

[76].  J. Li, G. ZhangM. Mei i and K. Zhang, Steady hydrodynamic model of semiconductors with sonic boundary: (II) Supersonic doping profile,  SIAM J. Math. Anal. in press.  [PDF]  arXiv:1610.09595v1

[75].  
Haitong Li, Jingyu LiM. Mei and Kaijun Zhang, Convergence to nonlinear diffusion waves for solutions of p-system with time-dependent damping,   J. Math. Anal. Appl.,   456 (2017)  849--871. [PDF].

[74]
. F. Di Michele, M. Mei, B. Rubino and R. Sampalmieri, Thermal equilibrium solution to bipolar hybrid quantum hydrodynamical model, ,J. Differential Equations,  263 (2017)  1843--1873.  [PDF]

[73]. H. Hu, M. Mei, and K. Zhang, Relaxation limit in the bipolar semiconductor hydrodynamic model with non-constant doping profile,  J. Math. Anal. Appl.,  448 (2017) 1175--1203.  [PDF],

[72]. Q. Zhang,  M. Mei, and C.-J. Zhang, Higher-order linearized multistep finite difference methods for non-Fickian delay reaction-diffusion equations, Int. J. Numer. Anal. Model.,  14 (2017) 1--19. [PDF]

[71].  F. Di Michele, M. Mei,  B. Rubino and R. Sampalmieri, Stationary solutions to hybrid quantum hydrodynamical model of semiconductors in bounded domain,  Int. J. Numer. Anal. Model..Vol. 13 No. 6, (2016),  898--925. [PDE]

[70]. Haifeng HuM. Mei, and Kaijun Zhang,  Asymptotic analysis on a bipolar quantum semiconductor hydrodynamic model, Commun. Math. Sci., Vol. 14, No. 8 (2016), pp. 2331-2371. [PDF]

[69] Yuanxiao Li,  M. Mei, and Kaijun Zhang,  Existence of multiple nontrivial solutions for a p-Kirchhoff type elliptic problem involving sign-changing weight functions, Discrete Contin. Dyn. Syst. -- Series B, 21 (2016), 883--908. [PDF]

[68]. Z.-X. Yu and M. Mei,  Uniqueness and stability of traveling waves for cellular neural networks with multiple delays, J. Differential Equations,  260 (2016) , 241--267. [PDF]

[67].  Rui Huang, M. Mei,  Kaijun Zhang and Q. Zhang, Asymptotic stability of non-monotone traveling waves  for time-delayed nonlocal dispersion equations,   Discrete Contin. Dyn. Syst. -- Series A, 38 (2016) 1331--1353. [PDF]

[66]. M. Mei,  Hongyu Peng and Zhi-An Wang, Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis, J. Differential Equations,  259 (2015), 5168--5191. [PDF]

[65].  I-L. Chern, M. Mei,  Xiongfeng Yang, and Q. Zhang, Stability of  non-montone critical traveling waves for reaction-diffusion equations with time-delay, J. Differential Equations,  259 (2015), 1503--1541. [PDF]

[64].  R. HuangM. Mei and  J. Yin, Classical solutions for the Cahn-Hilliard equation with decayed mobility,  Bound. Value Probl. 2014, 2014:264. [PDF]

[63].  C.-K. Lin, C.-T. Lin, Y. Lin,  and M. Mei, Exponential Stability of Nonmonotone Traveling Waves for Nicholson's Blowflies Equation,     SIAM J. Math. Anal.  Vol. 46 (2014), pp. 1053-1084. [PDF]

[62]. D. Donatelli, M. Mei B. Rubino, and R. Sampalmieri, Asymptotic behavior of solutions to the Cauchy prolem of Euler-Poisson equations, J. Differential Equations, Vol. 255, No. 10, (2013), 3150--3184. [PDF]

[61]Z.-X. Yu, M. Mei,  Asymptotics and uniqueness of travelling waves for non-monotone delayed systems on 2D lattices, Canadian Math. Bulletin,  56 (2013), 659--672. [PDF]

[60]M. Mei, B. Rubino, and R. Sampalmieri Asymptotic behavior of solutions to the bipolar  hydrodynamic model of semiconductors in bounded domain, Kinetics and Related Models, Vol. 5, No. 3 (2012), 537--550.  [PDF]

[59]. F.-M. Huang, M. Mei, Y. Wang, and T. Yang, Long-time behavior of solutions for bipolar hydrodynamic model of semiconductors with boundary effects, SIAM J. Math. Anal., Vol. 44,  (2012), 1134--1164. [PDF]

[58].  R. Huang, M. Mei, Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity,  Discrete Contin. Dyn. Syst. -- Series A, Vol. 32, (2012), 3621--3649.  [PDF]. 

[57]. M. Mei, Y. Wang, Stability of  stationary waves for full Euler-Poisson system  in multi-dimensional space, Commun. Pure Appl. Anal. 11 (2012), 1775--1807.  [PDF]

[56]. M. Mei, Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations,  International Journal of Numerical Analysis and Modeling, Series  B, Vol.2, No.4, (2011), 379-401. [PDF]

[55]. F.-M. Huang, M. Mei, Y. Wang, Large-time behavior of solutions to n-dimensional bipolar hydrodynamical model of semiconductors, SIAM J. Math. Anal., Vol. 43, No.4, (2011),.1595--1630. [PDF]

[54]. F.-M. Huang, M. Mei, Y. Wang and H. Yu,  Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors,  J. Differential Equations, 251 (2011), 1305–1331. [PDF]

[53]. F.-M. Huang, M. Mei, Y. Wang and H. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., Vol. 43, No.1, (2011), 411-429. [PDF]

[52]. M. Mei, C.H. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for  nonlocal time-delayed reaction-diffusion equations,  SIAM J. Math. Anal., Vol. 42, No.6 (2010), 2762--2790. [PDF],   Vol. 44, No.1 (2012), pp 538--540. [Erratum]

[51]. M. Mei, Best asymptotic profile for hyperbolic p-system with damping, SIAM J. Math. Anal., Vol. 42, No.1 (2010), 1-23. [PDF]

[50]. H. Ma, M. Mei, Best asymptotic profile for linear damped p-system with boundary effect,  J. Differential Equations, 249 (2010), 446--484.  [PDF]

[49] C.-K. Lin, C-T. Lin, M. Mei, Asymptotic Behavior of Solution to Nonlinear Damped p-System with Boundary Effect, International Journal of Numerical Analysis and Modeling, Series  B, 1 (2010).  [PDF]

[48]. C.-K. Lin, M. Mei,  On travelling wavefronts of the Nicholson's blowflies equation with diffusion,   Proc. Royal Soc. Edinburgh (A), 140A (2010), 135--152. [PDF]

[47]. D. Wei,   J. Y. Wu, M. Mei, Remark on critical speed of traveling wavefronts for Nicholson's blowflies equation with diffusion,  Acta Math. Sci., 30B (5),  (2010) . [PDF]

[46]. M. Mei,  Hyperbolic damped p-system and diffusion phenomena, a survey paper appeared in the RIMS lecture series of "Mathematical Analysis in Fluid and Gas Dynamics", RIMS Kôkyûroku,  Kyoto University, Japan, 2010. [PDF]

[45]. M. Mei,  Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping ,  J.  Differential Equations, 247 (2009), 1275--1269. [PDF]

[44]. M. Mei, C.-K. Lin, C-T. Lin, and J.W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (I) local nonlinearity,  J. Differential Equations247 (2009), 495--510.  [PDF]

[43]M. Mei, C.-K. Lin, C-T. Lin, and J.W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (II) nonlocal nonlinearity,  J. Differential Equations, 247 (2009), 511--529.  [PDF]

[42]. M. Mei, Y. S. Wong, Novel stability results for travelling wavefronts in an age-structured reaction-diffusion population model,  Mathematical Biosciences and Engineerings, (2009), 743--752. [PDF]

[41]. M. Mei, Stability of Traveling Wavefronts for Time-Delayed Reaction-Diffusion Equations, Proceedings of the 7th AIMS International Conference ( Texas, USA), Discrete Cont. Dyn. Syst., Supplement 2009, 526--535. [PDF]

[40]. M. Mei, J.W.-H. So Stability of strong traveling waves for a non-local time-delayed reaction-diffusion equation, Proc. Royal Soc. Edinburgh (A). 138 (2008), 551--568. [PDF]

[39]. D. Wei, J.-Y. Wu, M. Mei, A more effective iteration method for solving algebraic equations ,   Applied Mathematical Sciences, 2 (2008), no. 28, 1387--1391.  [PDF]

[38]. L.-P. Liu, M. Mei, and Y. S. Wong, Stationary solutions of phase transition in a coupled viscoelastic system, ``Nonlinear Analysis Research Trends'', Edited by N. Roux, Nova Science Publishers, Inc. 2008, p.p. 277--293. [PDF]

[37]. G. LiM. Mei, and Y. S. Wong, Nonlinear stability of travelling wavefronts in an age-structured reaction-diffusion population model, Mathematical Biosciences and Engineerings, 5, No. 1, (2008),  85--100. [PDF]

[36]. J.-Y. Wu, D. Wei, M. Mei, Analysis on the critical speed of traveling waves, Applied Math. Letters, 20 (2007) 712--718. [PDF]

[35]. M. Gander, M. Mei,  and G. Schmidt, Phase transition for a relaxation model of mixed type with periodic boundary condition, Applied Mathematics Research eXpress, Vol. 2007, Article ID: abm006, Oxford University Press, p.p. 1-34, 2007. [PDF]

[34]. L.-P. Liu, M. Mei, and Y. S. Wong, Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) existence and uniform boundedness , Discrete Cont. Dyn. Syst.,-- B, 7 (2007) 825--837. [PDF]

[33]. L.-P. Liu, M. Mei, and Y. S. Wong, Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (II) convergence , Discrete Cont. Dyn. Syst.,-- B, 7 (2007) 839--857. [PDF]

[32]. L.-P. Liu, M. Mei, and Y. S. Wong, Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary, Nonlinear Analysis, 65 (2007) 2527--2539. [PDF]

[31]. P. Marcati,  M. Mei, and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech. 7 (2005). [PDF]

[30]. M. Mei, J.W.-H. So, M. Li and S.S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Royal Soc. Edinburgh, 134A (2004) 579--594. [PDF]

[29] L.-P. Liu , M. Mei, A better asymptotic profile of Rosenau-Burgers equation  Appl. Math. Comput. 131 (2002) 147--170. [PDF]

[28]. H.-L. Li, P. Markowich, M. Mei, Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors , Proc. Royal Soc. Edinburgh, 132A (2002) 359--378. [PDF]

[27]. H.-L. Li, P. Markowich, M. Mei,Asymptotic behavior of subsonic entropy solutions of the isentropic Euler-Poisson equations, Quart. Appl. Math. (2002) 773--796. [PDF]

[26]. L. Hsiao, H.-L. Li, M. Mei,Convergence rates to superposition of two travelling waves of the solutions to a relaxation hyperbolic conservation laws with boundary effects, Math. Models Methods Appl. Sci. 11 (2001) 1143--1168. [PDF]

[25]. P. Marcati, M. Mei,Convergence to nonlinear diffusion waves for solutions of the initial boundary problem to the hyperbolic conservation laws with damping, Quart. Appl. Math. 58 (2000) 763--784. [PDF]

[24]. M. Mei, C. Schmeiser, Asymptotic profile of solution for the BBM-Burgers equation, Funkcial. Ekvac. 44 (2001) 151--170. [PDF]

[23]. S. Kinami, M. Mei, S. Omata, Convergence to diffusion waves of the solutions for Benjamin-Bona-Mahony-Burgers equations, Appl. Anal. Vol.75 No.3-4 (2000). [PDF]

[22]. M. Mei, B. Rubino, Convergence to traveling waves with decay rates for solutions of the initial boundary problem to a nonconvex relaxation model , J. Differential Equations, 159 (1999) 138--185. [PDF]

[21]. M. Mei, L^q-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations, J. Differential Equations, 158 (1999) 314--340. [PDF]

[20]. A. Matsumura, M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary , Arch. Rational Mech. Anal. 146 (1999) 1--22. [PDF]

[19]. M. Mei, Asymptotic behavior of solutions for a degenerate hyperbolic system of viscous conservation laws, Z. Angew. Math. Phys. 50 (1999) 617--637. [PDF]

[18]. M. Mei, Remark on stability of shock profiles for nonconvex scalar viscous conservation laws, Bull. Inst. Math. Acad. Sinica, 27 (1999) 213--226. [PDF]

[17]. M. Mei I-L. Chern,  Asymptotic stability of critical viscous shock waves for a degenerate hyperbolic viscous conservation laws, Commun. Partial Differential Equations, 23 (1998) 869-886. [PDF]

[16]. M. Mei, T. Yang, Convergence rates to travelling waves for a nonconvex relaxation model , Proc. Royal Soc. Edinburgh, 128A (1998) 1053-1068. [PDF]

[15]. M. Mei, Large-time behavior of solution for generalized Benjamin-Bona-Mahony-Burgers equations, Nonlinear Analysis, TMA 33 (1998) 699-714. [PDF]

[14]. M. Mei, A. Matsumura, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity, Osaka J. Math. 34 (1997) 589-603. [PDF]

[13]M. Mei, Stability of traveling wave solutions for nonconvex equations of barotropic viscous gas, Osaka J. Math. 34 (1997) 303-318. [PDF]

[12]. M. Mei, K. Nishihara, Nonlinear stability of travelling waves for one dimensional viscoelastic materials with non-convex nonlinearity, Tokyo J. Math. 20(1997) 241-264. [PDF]

[11]. M. Mei, Long-time behavior of solution for Rosenau-Burgers equation (I), Appl. Anal. 63 (1996) 315-330. [PDF]

[10]. M. Mei, Long-time behavior of solution for Rosenau-Burgers equation (II), Appl. Anal. 68 (1998) 333--356. [PDF]

[9]. M. Mei (梅茗 メイ   ミン), Nonlinear Stability of Traveling WavesSolutions  for Non-Convex Viscous Conservation Laws (非凸性を持つ粘性的保存則に対する進行波解の非線形漸近安定性), Ph.D. Thesis (博士論文) , Kanazawa University (金沢大学), Japan, March of 1996.  [PDF]

[8]. M. Mei, Stability of shock profiles for nonconvex scalar viscous conservation laws, Math. Models Methods Appl. Sci. 5 (1995) 279-296. [PDF]

[7]. M. Mei, Y.-K. Xiao: Analysis for a mathematical model of the pattern formation on shells of mollusks, Appl. Math.-JCU (高校应用数学学报英文版 10B (1995) 411-418. [PDF]

[6]. 梅茗,黄福英, 高维非线性四阶抛物型方程初值问题全局解 (Global solutions of  Cauchy problem for  nonlinear fourth order parabolic equations with high dimension), 高校应用数学学报(中文版) (Applied Mathematics - A Journal of Chinese Universities),  1993年第8卷第1期 (Vol. 8, No.1, (1993)), 45--52. [PDF]

[5]. 梅茗,肖应昆, 具有非局部边值约束的中子迁移问题单调衰减解(Monotonic decay of solutions for nonlocal neutron transport equation with boundary effect),  应用数学(Mathematica Applicata),1992年第5卷第4期 (Vol. 5, No. 4, (1992)),109--112. [PDF]

[4]. 梅茗,曹德芬,肖应昆, 一类反应扩散系统解的全局稳定性和渐近性(Global asymptotic stability of solutions for a class of reaction-diffusion system), 数学物理学报Acta Math. Sci. ),1992年第12卷 增刊 (Vol. 12, Suppl.  (1992)),119--121. [PDF]

[3]. 梅茗, 高 维广义神经传播方程Cauchy问题整体光滑解 (Global smooth solutions of  the Cauchy problem  for the generalized equation of pulse transmission with higher dimension) 应用数学学报(中文版)(Acta Mathematicae  Applicatae  Sinica), 1991年04期 450-461. (硕士论文 master thesis) [PDF]

[2].  梅茗,Maxwell—Boltzmann方程非负解的极值原理和渐近性质 (Maximum principles and asymptotic properties of nonnegative solutions to the Maxwell-Boltzmann equation), 数学杂志(J. Math.(Wuhan))1990年第10卷第3期 341-348页. [PDF]

[1]. M. Mei, On nonlinear coupled reaction-diffusion equations, Acta Math. Sci. Series B(数学物理学报英文版), Vol. 9, No. 2 (1989) 163--174. [PDF]