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SUBSONIC AND SUPERSONIC STEADY-STATES OF
BIPOLAR HYDRODYNAMIC MODEL OF SEMICONDUCTORS WITH

SONIC BOUNDARY∗

PENGCHENG MU† , MING MEI‡ , AND KAIJUN ZHANG§

Abstract. In this paper, we investigate the well-posedness/ill-posedness of the stationary solutions
to the isothermal bipolar hydrodynamic model of semiconductors driven by Euler-Poisson equations.
Here, the density of electrons is proposed with sonic boundary and considered in interiorly subsonic
case or interiorly supersonic case, while the density of holes is considered in fully subsonic case or fully
supersonic case. With the developed technique based on the topological degree method, the following
four kinds of stationary solutions under some conditions are proved to exist: the interiorly-subsonic-vs-
fully-subsonic solution, the interiorly-supersonic-vs-fully-subsonic solution, the interiorly-subsonic-vs-
fully-supersonic solution, and the interiorly-supersonic-vs-fully-supersonic solution. The non-existence
of the above four kinds of solutions under some conditions is also technically proved. For the existence
of these physical solutions, different from the previous studies, where traditional fixed-point argument
via energy estimates is used, we recognize that such an approach fails for our cases, due to that the
effect of boundary degeneracy for the electrons causes difficulty in estimating the upper and lower
bounds for the holes. Instead of it, we use the topological degree method to prove the existence of
physical solutions.

Keywords. Bipolar hydrodynamic model of semiconductors; Euler-Poisson equations; sonic
boundary; steady-states; subsonic/supersonic solutions; topological degree method.
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1. Introduction
The bipolar hydrodynamic (HD) model of semiconductors is usually used to describe

the flow of electrons and holes in semiconductor devices [4, 19, 24], which is written as
the following system of Euler-Poisson equations:

ρt+J1x= 0,

J1t+
(J2

1

ρ
+P1(ρ)

)
x

=ρΦx−
J1

τ
,

nt+J2x= 0,

J2t+
(J2

2

n
+P2(n)

)
x

=−nΦx−
J2

τ
,

Φxx=ρ−n−b(x).

(1.1)

In semiconductor devices, the unknowns ρ(x,t), n(x,t), J1(x,t), J2(x,t) and Φ(x,t)
represent the electron density, the hole density, the current density of electrons, the
current density of holes and the electrostatic potential, respectively. P1(·), P2(·), b(x)
are given functions which represent the pressure of electrons, the pressure of holes, and
the doping profile standing for the density of impurities in semiconductor devices. The
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given constant τ represents the momentum relaxation time. The global existence and
uniqueness of the solutions as well as the asymptotic behaviors and classic limits for
such a model subjected to different IVP or IBVPs has been intensively studied, for
example, see [7, 10,13,15–17,25] and the references therein.

The corresponding steady-state equations of (1.1) can be written by

J1 = constant1,(J2
1

ρ
+P1(ρ)

)
x

=ρΦx−
J1

τ
,

J2 = constant2,(J2
2

n
+P2(n)

)
x

=−nΦx−
J2

τ
,

Φxx=ρ−n−b(x).

(1.2)

Our main purpose in this paper is to study the well/ill-posedness of the steady-state
solutions of (1.2). There is limited research on the bipolar steady-state Equations (1.2).
For example, in [31], Li and Zhou studied the existence of stationary solutions to a
Dirichlet problem in 1-D, but they assumed that the doping profile is zero. Then, Tsuge
[29] studied the 1-D bipolar HD model with Ohmic contact boundary, and obtained the
existence and uniqueness of the subsonic stationary solution with the assumption that
the electrostatic potential is small enough. In [30], Yu obtained the existence and
uniqueness of the subsonic stationary solution with insulating boundary conditions by
the calculus of variations in N -D, where N = 1,2.

The target in this paper is to investigate the existence/non-existence of the sta-
tionary solutions of (1.2) with sonic boundary to electrons, and make a classification of
these solutions. Setting

(v,u) = (
|J1|
ρ
,
|J2|
n

),

then v, u are the absolute velocities of electrons and holes, respectively. By the termi-
nology in gas dynamics, ce :=

√
P
′
1(ρ) is called the sound speed of electrons, and ch :=√

P
′
2(n) is called the sound speed of holes. For the stationary solution (J1,J2,ρ,n,E) of

(1.2), the corresponding electron velocity v is said to be subsonic/sonic/supersonic if

vS ce=
√
P
′
1(ρ) : sound speed of electrons. (1.3)

Meanwhile, the corresponding hole velocity u is said to be subsonic/sonic/supersonic if

uS ch=
√
P
′
2(n) : sound speed of holes. (1.4)

For convenience, we assume that the pressures are in accordance with the isothermal
case:

P1(s) =P2(s) =P (s) =Ts,

for some constant temperature T >0. We denote:

Φx=E,
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where E is called the electric field of the semiconductor model. We are concerned about
the current driven flow, i.e, with the given current densities J1 and J2, we seek for ρ, n
and E from (1.2). Without loss of generality, we assume that J1 = 1, J2 =−1 and T = 1,
and we use Ω =(0,1) to denote the bounded semiconductor device domain. Then (1.2)
reads: 

(1

ρ
− 1

ρ3

)
ρx=E− 1

τρ
,( 1

n
− 1

n3

)
nx=−E+

1

τn
, x∈ (0,1),

Ex=ρ−n−b(x).

(1.5)

From (1.3) and (1.4), the flow of electrons is said to be subsonic/sonic/supersonic if

vS1, or equivalently, ρT1,

and the flow of holes is said to be subsonic/sonic/supersonic if

uS1, or equivalently, nT1.

We impose (1.5) with the sonic boundary condition to electrons:

ρ(0) =ρ(1) = 1, (1.6)

and a given boundary condition to holes

n(0) =σ0, (1.7)

where the size of σ0 will be discussed later. Differentiating the first and the second
equations with respect to x in (1.5), and collecting the boundary conditions in (1.6) and
(1.7), we obtain

[(1

ρ
− 1

ρ3

)
ρx

]
x

+
( 1

τρ

)
x

=ρ−n−b(x),[( 1

n
− 1

n3

)
nx

]
x
−
( 1

τn

)
x

=n+b(x)−ρ, x∈ (0,1),

ρ(0) =ρ(1) = 1, n(0) =σ0.

(1.8)

Throughout this paper, we assume that b(x)∈L∞(0,1), and denote

b= essinf
x∈[0,1]

b(x), and b̄= esssup
x∈[0,1]

b(x).

We use C to denote positive constants, which may take different values in each appear-
ance. Since the system (1.8) is degenerate at the sonic boundary ρ(0) =ρ(1) = 1, the
solutions of (1.8) will not possess a certain regularity, and have to be in the weak form.
So, we give the following definition for weak solutions.

Definition 1.1. Assume that ρ(0) =ρ(1) = 1, n(0) =σ0, (ρ(x)−1)2∈H1
0 (0,1), n(x)∈

W 2,∞(0,1), and for any ϕ∈H1
0 (0,1) it holds that∫ 1

0

(1

ρ
− 1

ρ3

)
ρxϕxdx+

1

τ

∫ 1

0

ϕx
ρ
dx+

∫ 1

0

(
ρ−n−b

)
ϕdx= 0, (1.9)
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and ∫ 1

0

( 1

n
− 1

n3

)
nxϕxdx−

1

τ

∫ 1

0

ϕx
n
dx+

∫ 1

0

(
n+b−ρ

)
ϕdx= 0. (1.10)

Furthermore, we define that:

(1) If ρ>1 over (0,1) and n>1 over [0,1], then (ρ,n) is called a pair of interiorly-
subsonic solutions ρ(x) coupled with fully-subsonic solution n(x) of (1.8), simply,
the subsonic-vs-subsonic solution;

(2) If 0<ρ<1 over (0,1) and n>1 over [0,1], then (ρ,n) is called a pair of interiorly-
supersonic solutions ρ(x) coupled with fully-subsonic solution n(x) of (1.8), simply,
the supersonic-vs-subsonic solution;

(3) If ρ>1 over (0,1) and 0<n<1 over [0,1], then (ρ,n) is called a pair of interiorly-
subsonic solutions ρ(x) coupled with fully-supersonic solution n(x) of (1.8), simply,
the subsonic-vs-supersonic solution;

(4) If 0<ρ<1 over (0,1) and 0<n<1 over [0,1], then (ρ,n) is called a pair of
interiorly-supersonic solutions ρ(x) coupled with fully-supersonic solution n(x) of
(1.8), simply, the supersonic-vs-supersonic solution.

We will prove the well-posedness/ill-posedness of the above four kinds of solutions.
First, to obtain the solutions of (1.8), we should give an extra boundary condition.
However, the condition imposed on (1.8) can not be arbitrary since we have to ensure
that the solution of (1.8) is also the one of (1.5). In the following sections of this paper,
(1.8) will be regarded as a free boundary value problem by assuming that n(1) =σ1 for
some σ1 to be determined.

When ρ(x)>1 or 0<ρ(x)<1 for x∈ (0,1), the first equation in (1.8) is elliptic
but degenerate at the sonic boundary. The degeneracy of the electron equation in
(1.8) will bring us some difficulties. To handle the degenerate boundary, we will use
the technical compactness method in [20], in which the authors investigated the well-
posedness and regularity of stationary solutions to the unipolar HD model with sonic
boundary. However, in proving the well-posedness of the system (1.8), the main difficulty
occurs in the second equation. We will seek for the solutions of (1.8) such that the hole
density is fully subsonic or fully supersonic, i.e, n>1 or 0<n<1 over [0,1], hence the
second equation in (1.8) is uniformly elliptic on [0,1]. For this purpose, we have to
carefully estimate the lower and upper bounds of n. Notice that the traditional energy
estimate method after linearization of the system (1.8) can not be applied here since
some key estimates for the bounds of n could not be obtained from the linearized system.
For this reason, remarkably, we shall develop a new technique based on the topological
degree method to transfer the problem for proving the well-posedness of the system
(1.8) into finding the suitable bounds of the solutions to some new systems which have
the same second and first order terms as (1.8). We will see in the following sections that
these new systems have some “good properties” similar to (1.8) which could be used to
obtain the desired estimates of the bounds of n, and as a result, the well-posedness of
the above four kinds of stationary solutions could be proved. Finally, the ill-posedness of
the solutions to (1.8) under some conditions is proved using standard energy estimates
and some refined analysis based on the original ODE system (1.5).

Remark 1.1.

(1) The identity (1.9) is well-defined for (ρ(x)−1)2∈H1
0 (0,1) and ϕ∈H1

0 (0,1) since it



PENGCHENG MU, MING MEI, AND KAIJUN ZHANG 2009

is equivalent to

1

2

∫ 1

0

ρ+1

ρ3

[(
ρ−1

)2]
x
ϕxdx+

1

τ

∫ 1

0

ϕx
ρ
dx+

∫ 1

0

(
ρ−n−b

)
ϕdx= 0;

(2) Once ρ(x) is obtained from (1.8), we could solve the electric field E(x) by taking

E(x) =
(1

ρ
− 1

ρ3

)
ρx+

1

τρ
=

(ρ+1)[(ρ−1)2]x
2ρ3

+
1

τρ
. (1.11)

The following sections will be devoted to investigating the well-posedness/ill-
posedness of the interior-subsonic-fully-subsonic flow, the interior-supersonic vs fully-
subsonic flow, the interior-subsonic vs fully-supersonic flow and the interior-supersonic
vs fully-supersonic flow, respectively. For the main results of this paper, we refer to
Theorem 2.1, Theorem 2.2, Theorem 3.1, Theorem 3.2, Theorem 4.1, Theorem 4.2,
Theorem 5.1 and Theorem 5.2 in the following sections.

In the end of this section, we mention some results of the stationary solutions to
the unipolar HD model. For example, in 1990, Degond and Markowich [5] showed
the existence of the completely subsonic flow, and proved the uniqueness with |J |�1.
And then a lot of attention has been paid to the existence of the subsonic flow for
the steady-state equations with different boundary conditions and higher dimensions,
see [2,3,6,14,18,26] and the references therein. In 2006, Peng and Violet [27] obtained
the existence and uniqueness of supersonic solution with a strong supersonic boundary
condition. For the transonic flow, we refer to [1, 11, 12, 20, 22, 23, 28]. Recently, Li-
Mei-Zhang-Zhang [20, 21] thoroughly studied the unipolar HD model of Euler-Poisson
equations with sonic boundary, and made a classification of the solutions. In [20], the
authors showed that when the relaxation time τ is small enough and the subsonic doping
b is a constant, the system admits infinitely many C1 smooth transonic solutions, but
has no transonic shock solutions. And when τ�1 and the subsonic doping b is flat, the
system admits infinitely many transonic shock solutions. The results showed that the
semiconductor effect cannot be ignored. For the hydrodynamic system with quantum
effect, the subsonic steady-states were investigated in [8, 9].

2. Interiorly-subsonic-vs-fully-subsonic flow
Consider the system

(1

ρ
− 1

ρ3

)
ρx=E− 1

τρ
,( 1

n
− 1

n3

)
nx=−E+

1

τn
, x∈ (0,1),

Ex=ρ−n−b(x).

(2.1)

Let σ0>1. In this section, we investigate the existence and non-existence of solutions
of (2.1) such that

ρ(0) =ρ(1) = 1, ρ(x)>1, x∈ (0,1); n(0) =σ0, n(x)>1, x∈ [0,1]. (2.2)

Differentiating the first and the second equations in (2.1) with respect to x, we obtain

[(1

ρ
− 1

ρ3

)
ρx

]
x

+
( 1

τρ

)
x

=ρ−n−b(x),[( 1

n
− 1

n3

)
nx

]
x
−
( 1

τn

)
x

=n+b(x)−ρ, x∈ (0,1),

ρ(0) =ρ(1) = 1, n(0) =σ0.

(2.3)
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Observing that (2.3) is a coupled PDE system of (ρ,n) of second order degenerate elliptic
equations, we should give an extra boundary condition. However, as mentioned in the
previous section, the condition could not be arbitrarily imposed since we have to ensure
that the solutions of (2.3) also solve (2.1). Assume that (ρ,n) is a solution of (2.3) with
n(1) =σ1. Combining the equations in (2.3) we obtain(1

ρ
− 1

ρ3

)
ρx+

1

τρ
=

1

τn
−
( 1

n
− 1

n3

)
nx+c, (2.4)

where c is a constant. It is easy to verify that (ρ,n,E) with E defined in (1.11) solves
(2.1) if and only if c= 0. Integrating (2.4) over (0,1), we obtain

fσ0
(σ1) :=

(
lnσ0 +

1

2σ2
0

)
−
(
lnσ1 +

1

2σ2
1

)
=

1

τ

∫ 1

0

[ 1

ρ(x)
− 1

n(x)

]
dx−c. (2.5)

Hence c= 0 if and only if

fσ0
(n(1)) =fσ0

(σ1) =
1

τ

∫ 1

0

[ 1

ρ(x)
− 1

n(x)

]
dx. (2.6)

On the contrary, if (ρ,n,E) is a solution of (2.1)-(2.2), then (2.6) must hold.
Due to the discussions above, we could reformulate our problem into the following:

P1: Finding the solution (ρ,n) of (2.3) such that (2.2) and (2.6) hold, where σ1 =n(1).

2.1. Well-posedness. We are going to prove the existence of subsonic-vs-
subsonic solutions to P1 as well as their regularities.

Theorem 2.1. For any b(x)∈L∞(0,1), τ >0 and n>1, there exists a constant
σ∗=σ∗(b̄,τ,n)>1 which only depends on b̄, τ and n, such that for any σ0≥σ∗, P1

admits the pair of subsonic-vs-subsonic solution (ρ,n)∈C 1
2 [0,1]×W 2,∞(0,1) and n≥n

over [0,1].

Since the first equation of (2.3) is degenerate at the boundary, we consider the
following approximate system:

[( 1

ρj
− j

ρ3
j

)
(ρj)x

]
x

+
( 1

τρj

)
x

=ρj−nj−b(x),

[( 1

nj
− 1

n3
j

)
(nj)x

]
x
−
( 1

τnj

)
x

=nj+b(x)−ρj , x∈ (0,1),

ρj(0) =ρj(1) = 1, nj(0) =σ0,

(2.7)

where j∈ (0,1) is a constant. For simplicity of notations, we omit the subscript j and
denote the solution of (2.7) by (ρ,n).

Lemma 2.1. For any b(x)∈L∞(0,1), τ >0, j∈ (0,1) and n>1, there exists a constant
σ∗=σ∗(b̄,τ,n)>1 which only depends on b̄, τ and n, such that for any σ0≥σ∗, (2.7)
admits a solution (ρ,n)∈W 2,∞(0,1)×W 2,∞(0,1) which satisfies (2.2), (2.6) and n≥n
over [0,1].

Proof. Taking n̄>1 such that n̄=f−1
σ0

(− 2
τ ), where f−1

σ0
is the inverse function of

fσ0
defined in (2.5). It is easy to check that n̄>σ0. Define

X=
{

(ρ,n)∈C[0,1]×C[0,1]
}
,

D=
{

(ρ,n)∈X, m<ρ<M, λ<n<Λ
}
,
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where

m=

√
j+1

2
, M = n̄+ b̄+2, λ=

n+1

2
, Λ = n̄+1.

It is easy to verify that D is a bounded and open subset of X, and

∂D=
{

(ρ,n)∈X, m≤ρ≤M, λ≤n≤Λ, and ∃x∈ [0,1],

s.t : ρ(x) =m or ρ(x) =M or n(x) =λ or n(x) = Λ
}
.

For any (ρ̃,ñ)∈ D̄, we have

1

τ

∫ 1

0

1

ρ̃(x)
− 1

ñ(x)
dx≤ 1

τ

∫ 1

0

1

ρ̃(x)
dx≤ 2

τ(
√
j+1)

≤ 2

τ
.

Therefore for any given τ >0 and n>1, there is a unique σ∗1 >1 such that

fσ∗1 (n) =
2

τ
≥ 1

τ

∫ 1

0

1

ρ̃(x)
− 1

ñ(x)
dx.

Assuming that σ0≥σ∗1 , then fσ0
(n)≥fσ∗1 (n) = 2

τ . On the other hand, since

1

τ

∫ 1

0

1

ρ̃(x)
− 1

ñ(x)
dx≥−1

τ

∫ 1

0

1

ñ(x)
dx≥−1

τ
>−2

τ
=fσ0(n̄),

we conclude that for any (ρ̃,ñ)∈ D̄, there exists a unique σ̃1∈ [n,n̄] such that

fσ0(σ̃1) =
1

τ

∫ 1

0

1

ρ̃(x)
− 1

ñ(x)
dx. (2.8)

Now we define the operator Γ : D̄→X, (ρ̃,ñ) 7→ (ρ,n) by solving

[(1

ρ̃
− j

ρ̃3

)
ρx
]
x
− 1

τ ρ̃2
ρx= ρ̃− ñ−b(x),

[( 1

ñ
− 1

ñ3

)
nx
]
x

+
1

τ ñ2
nx= ñ+b(x)− ρ̃, x∈ (0,1),

ρ(0) =ρ(1) = 1, n(0) =σ0, n(1) = σ̃1,

(2.9)

where σ̃1 is defined in (2.8). Then from the linear theory of elliptic equations, Γ : D̄→X
is a compact and continuous operator. Set ψ̃= (ρ̃,ñ), and ψ= (ρ,n) = Γψ̃.

Take G : D̄× [0,1]→X, G(ψ̃,ε) = ψ̃−εΓψ̃= ψ̃−εψ. It is obvious that if G(ψ̃,1) = 0,
then ψ̃ is also a solution of (2.7), and (2.6) holds for ψ̃. Take q= (1,σ0)∈D, and set
p(ε) = (1−ε)q for ε∈ [0,1]. If p(ε) /∈G(∂D,ε) for any ε∈ [0,1], then due to the topological
degree theory,

deg
(
G(·,1),D,0

)
=deg

(
G(·,0),D,q

)
=deg

(
id,D,q

)
= 1, (2.10)

and therefore G(ψ̃,1) = 0 admits a solution ψ̃∈D.
On the contrary, if there are ε∈ [0,1] and ψ̃∈∂D such that

p(ε) = (1−ε)q=G(ψ̃,ε) = ψ̃−εψ,
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then if ε= 0, we obtain that ψ̃= q. This is impossible since q∈D, ψ̃∈∂D and D is an
open set in X. If ε∈ (0,1], then

ψ=
1

ε
ψ̃− 1−ε

ε
q. (2.11)

Introducing (2.11) into (2.9), we conclude that ψ̃∈∂D satisfies the following equations

[(1

ρ̃
− j

ρ̃3

)
ρ̃x
]
x

+
( 1

τ ρ̃

)
x

= ε
(
ρ̃− ñ−b(x)

)
,

[( 1

ñ
− 1

ñ3

)
ñx
]
x
−
( 1

τ ñ

)
x

= ε
(
ñ+b(x)− ρ̃

)
, x∈ (0,1),

ρ̃(0) = ρ̃(1) = 1, ñ(0) =σ0, ñ(1) =σ0 +ε(σ̃1−σ0), σ̂1,

(2.12)

where fσ0
(σ̃1) = 1

τ

∫ 1

0
1

ρ̃(x)−
1

ñ(x)dx and as a result σ̂1∈ [n,n̄]. In the following proof, we

will show that for any ψ̃∈∂D, ψ̃ can not be a solution of (2.12) under some conditions,
hence (2.10) holds. We will estimate the bounds of the solutions of (2.12) directly.
Notice that (2.12) has the same second and first order terms as (2.7).

First, taking w1 = ρ̃−1 and w2 = ρ̃−(n̄+ b̄+1) respectively into the first equation
of (2.12), and using the standard maximum principle, we obtain that w1≥0 and w2≤0,
hence

m<1≤ ρ̃(x)≤ n̄+ b̄+1<M, ∀x∈ [0,1].

Now we show that λ<ñ<Λ when σ0 keeps away from 1. From (2.12) we have

(1

ρ̃
− j

ρ̃3

)
ρ̃x+

1

τ ρ̃
=

1

τ ñ
−
( 1

ñ
− 1

ñ3

)
ñx+c, (2.13)

where c is a constant. Integrating (2.13) over [0,1], we have

1

τ

∫ 1

0

1

ρ̃(x)
− 1

ñ(x)
dx=

(
lnσ0 +

1

2σ2
0

)
−
(
lnσ̂1 +

1

2σ̂2
1

)
+c=fσ0

(σ̂1)+c,

hence

c=
1

τ

∫ 1

0

1

ρ̃(x)
− 1

ñ(x)
dx−fσ0

(σ̂1) =fσ0
(σ̃1)−fσ0

(σ̂1).

Since fσ0 is monotonically decreasing and σ̂1 =σ0 +ε(σ̃1−σ0) is between σ0 and σ̃1, we
have

|c|= |fσ0
(σ̃1)−fσ0

(σ̂1)|≤ |fσ0
(σ̃1)−fσ0

(σ0)|

= |fσ0(σ̃1)|= |1
τ

∫ 1

0

1

ρ̃(x)
− 1

ñ(x)
dx|≤ 1

τ
,

therefore c∈ [− 1
τ ,

1
τ ]. For any x∈ (0,1], integrating (2.13) over (0,x), and setting Fj(ρ̃) =

ln ρ̃+ j
2ρ̃2 , F (ñ) = lnñ+ 1

2ñ2 , we have

Fj(ρ̃) =F (σ0)+
j

2
− 1

τ

∫ x

0

1

ρ̃(ξ)
− 1

ñ(ξ)
dξ+cx−F (ñ), (2.14)
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Based on the discussions above, we observe that Fj(ρ̃)+F (ñ) is bounded from both
above and below. That is

F (σ0)+
j

2
− 2

τ
≤Fj(ρ̃)+F (ñ)≤F (σ0)+

j

2
+

2

τ
. (2.15)

The above inequalities reveal that ρ̃ and ñ are almost negatively correlated. This prop-
erty will play an important role in the following proof. Furthermore, since ρ̃≥1, we
have that Fj(ρ̃)≥ j

2 . From (2.15) we have

F (ñ)≤F (σ0)+
2

τ
,

hence

fσ0(ñ) =
(
lnσ0 +

1

2σ2
0

)
−
(
lnñ+

1

2ñ2

)
≥−2

τ
,

and as a result ñ≤f−1
σ0

(− 2
τ ) = n̄<Λ.

Now we estimate the lower bound of ñ. Taking σ∗2 >1 such that

F (σ∗2)+
j

2
− 2

τ
−F (n)≥Fj(n+ b̄),

setting σ∗= max{σ∗1 ,σ∗2} and assuming that σ0≥σ∗, we have

F−1
j

(
F (σ0)+

j

2
− 2

τ
−F (n)

)
≥n+ b̄>1. (2.16)

Multiplying the second equation of (2.12) by (ñ−n)− := min{ñ−n,0} and integrating
it by parts, and noting that

1

τ

∫ 1

0

( 1

ñ

)
x

(
ñ−n

)−
dx=−1

τ

∫ 1

0

1

ñ2

(
ñ−n

)−
ñxdx

=−1

τ

∫ 1

0

(ñ−n)−(
(ñ−n)−+n

)2 [(ñ−n)−]xdx
=−1

τ

∫ 1

0

[
ln
(
(ñ−n)−+n

)
+

n

(ñ−n)−+n

]
x
dx

= 0,

we have by (2.15) and (2.16) that∫ 1

0

( 1

ñ
− 1

ñ3

)
|
(
(ñ−n)−

)
x
|2dx=−ε

∫ 1

0

(ñ+b− ρ̃)(ñ−n)−dx

=−ε
∫

Ω̃

(ñ+b− ρ̃)(ñ−n)−dx

≤−ε
∫

Ω̃

[
ñ+b−F−1

j

(
F (σ0)+

j

2
− 2

τ
−F (ñ)

)]
(ñ−n)−dx

≤−ε
∫

Ω̃

[
ñ+b−F−1

j

(
F (σ0)+

j

2
− 2

τ
−F (n)

)]
(ñ−n)−dx

≤−ε
∫

Ω̃

(ñ+b−n− b̄)(ñ−n)−dx

≤0,

(2.17)
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where Ω̃ ={x∈ [0,1],ñ≤n}. Therefore (ñ−n)−≡0 and ñ≥n>λ.
Now we have proved that m<ρ̃<M and λ<ñ<Λ when σ0≥σ∗, which contradicts

(ρ̃,ñ)∈∂D. Therefore deg(G(·,1),D,0) = 1 and (2.7) admits a solution (ρ,n)∈D, and
obviously (2.6) holds for (ρ,n). Due to the standard regularity theory and the discussions
above, we conclude that (ρ,n)∈W 2,+∞(0,1)×W 2,+∞(0,1) and n≥n.

Finally, using the same method as in [20] (Lemma 2.3), we can prove that

ρ(x)≥1+εsin(πx)>1, ∀x∈ (0,1), (2.18)

where ε>0 is a small constant independent of j. The proof is completed.

Remark 2.1. The main difficulty in the proof above is to obtain the desired lower
bound of ñ. The key observation is the “almost negative correlation” between ρ̃ and ñ.
This is an important property derived directly from (2.12).

Proof. (Proof of Theorem 2.1.) Now we use the compactness method in [20]
to obtain the solution of (2.3). Assume that (ρj ,nj) is the solution of (2.7) obtained
in Lemma 2.1. Multiplying the first equation in (2.7) by (ρj−1) and integrating it by
parts, we obtain

4

9

∫ 1

0

ρj+1

ρ3
j

|((ρj−1)
3
2 )x|2dx+(1−j)

∫ 1

0

|(ρj)x|2

ρ3
j

dx=−
∫ 1

0

(ρj−nj−b)(ρj−1)dx.

Using the standard energy estimate and the uniform boundness of ρj , nj in L∞(0,1),
we have

‖((ρj−1)
3
2 )x‖L2(0,1)≤C,

here and after, C is independent of j. Noting that ((ρj−1)2)x= 4
3 (ρj−1)

1
2 ((ρj−1)

3
2 )x,

we have by using the boundness of ρj that

‖(ρj−1)2‖H1
0 (0,1)≤C. (2.19)

Next, multiplying the second equation of (2.7) by (nj−nBj), where nBj(x) =σ0 +
x(nj(1)−σ0), and integrating the resultant equation by parts, we obtain∫ 1

0

n2
j−1

n3
j

|(nj)x|2dx=

∫ 1

0

n2
j−1

n3
j

(nj)x(nBj)xdx+
1

τ

∫ 1

0

1

nj
(nj−nBj)xdx

−
∫ 1

0

(nj+b−ρj)(nj−nBj)dx.

Noting that m≤ρj≤M and 1<n≤nj≤Λ, we have∫ 1

0

|(nj)x|2dx≤C
∫ 1

0

|(nj)x|dx+C≤ 1

2

∫ 1

0

|(nj)x|2 +C.

Hence ‖(nj)x‖L2(0,1)≤C, and therefore ‖nj‖H1(0,1)≤C. As a result, we conclude that
there is a subsequence of j (which is still denoted by j) such that as j→1−,

(ρj−1)2⇀ (ρ−1)2 weakly in H1
0 (0,1),

nj⇀n weakly in H1(0,1),
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and

‖(ρ−1)2‖H1
0 (0,1)≤C, ‖n‖H1(0,1)≤C.

In similar fashion to [20], we can prove that (ρ,n)∈C 1
2 [0,1]×W 2,+∞(0,1) and (ρ,n) is

a weak solution of (2.3). Meanwhile, since the imbedding from H1(0,1) to C[0,1] is
compact, we obtain in view of (2.18) and nj≥n that ρ>1 over (0,1), n≥n over [0,1]
and (2.6) hold.

2.2. Ill-posedness. This subsection is devoted to the proof of non-existence of
subsonic-vs-subsonic solutions when the semiconductor effect disappears.

Theorem 2.2. There is no pair of subsonic-vs-subsonic solutions to (2.1) if b(x) 6≡0,
τ = +∞ and σ0>1 but close to 1.

Proof. Assume that (ρ,n,E) is a subsonic-vs-subsonic solution of (2.1) with
τ = +∞, namely, ρ(0) =ρ(1) = 1, n(0) =σ0, ρ(x)>1, n>1 over (0,1). Due to (2.1) we
have

lnρ+
1

2

( 1

ρ2
−1
)

=
(
lnσ0 +

1

2σ2
0

)
−
(
lnn+

1

2n2

)
.

Hence n(1) =σ0, ρ<σ0, n<σ0 in (0,1). Obviously, n keeps decreasing in (0,ε1) and
increasing in (ε2,1) for some ε1,ε2∈ (0,1), and E(0)>0, E(1)<0.

Let x1∈ (0,1) be the first point such that n reaches its minimum, and x2∈ (0,1) the
last point. Then n(x1)≥n, n(x2)≥n, where n= inf

x∈[0,1]
n(x)>1. And E(x1) =E(x2) = 0,

nx<0, E >0 over (0,x1), nx>0, E <0 over (x2,1). Combining the second and the third
equations of (2.1), we have

n2−1

n3
(n+b−ρ)nx=EEx. (2.20)

Integrating (2.20) over (0,x1), we have

1

2
E2(0) =

∫ x1

0

n2−1

n3
(n+b−ρ)(−nx)dx

≤
∫ x1

0

n2−1

n3
(n+ b̄)(−nx)dx

=

∫ σ0

n(x1)

n2−1

n3
(n+ b̄)dn

≤
∫ σ0

n

n2−1

n3
(n+ b̄)dn

≤
∫ σ0

1

n2−1

n3
(n+ b̄)dn. (2.21)

Similarly, integrating (2.20) over (x2,1) gives

1

2
E2(1) =

∫ 1

x2

n2−1

n3
(n+b−ρ)nxdx

≤
∫ 1

x2

n2−1

n3
(n+ b̄)nxdx



2016 BIPOLAR HYDRODYNAMIC MODEL WITH SONIC BOUNDARY

=

∫ σ0

n(x2)

n2−1

n3
(n+ b̄)dn

≤
∫ σ0

n

n2−1

n3
(n+ b̄)dn

≤
∫ σ0

1

n2−1

n3
(n+ b̄)dn. (2.22)

According to the third equation of (2.1), it is easy to obtain that

E(0)+(−E(1)) =

∫ 1

0

b+n−ρdx≥
∫ 1

0

bdx+(1−σ0).

For the given b(x) 6≡0, assuming that σ0−1�1 such that E(0)+(−E(1))≥ 1
2

∫ 1

0
bdx>0,

then we have

E2(0)+E2(1) =E2(0)+(−E(1))2≥ 1

2

(
E(0)+(−E(1))

)2≥ 1

8

(∫ 1

0

bdx
)2
. (2.23)

Combining (2.21), (2.22) with (2.23), we obtain∫ σ0

1

n2−1

n3
(n+ b̄)dn≥ 1

4

(
E2(0)+E2(1)

)
≥ 1

32

∫ 1

0

bdx. (2.24)

Since n2−1
n3 (n+ b̄)≤σ0 + b̄, we could draw a contradictory conclusion to (2.24) if σ0−1�

1. Hence there is no interior-subsonic-fully-subsonic solution to (2.1) if b(x) 6≡0, τ = +∞
and σ0>1 is close to 1.

3. Interiorly-supersonic-vs-fully-subsonic flow
In this section, we consider the supersonic-vs-subsonic flow of (1.5). For conve-

nience, we use the velocity equation of electron, namely, taking v(x) = 1
ρ(x) , then (1.5)

is equivalent to the following
(
v− 1

v

)
vx=E− 1

τ v,(
1
n−

1
n3

)
nx=−E+ 1

τn , x∈ (0,1),

Ex= 1
v −n−b(x).

(3.1)

Let σ0>1. We investigate the existence and non-existence of solutions of (3.1) such
that

v(0) =v(1) = 1, v(x)>1, x∈ (0,1); n(0) =σ0, n(x)>1, x∈ [0,1]. (3.2)

Similar to the analysis in the previous section, we could reformulate the above problem
into the following:
P2: Finding the solution (v,n) of

[(
v− 1

v

)
vx
]
x

+
1

τ
vx=

1

v
−n−b(x),[( 1

n
− 1

n3

)
nx
]
x
−
( 1

τn

)
x

=n+b(x)− 1

v
, x∈ (0,1),

v(0) =v(1) = 1, n(0) =σ0,

(3.3)

such that (3.2) and

fσ0
(n(1)) =fσ0

(σ1) =
1

τ

∫ 1

0

v(x)− 1

n(x)
dx, (3.4)

hold, where σ1 =n(1) and fσ0
is defined in (2.5).
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3.1. Well-posedness. In this subsection, we prove that P2 admits a supersonic-
vs-subsonic solution for some b(x)∈L∞(0,1), τ >0 and σ0>1. First we give some
notations:

Notations. The following definitions will be used in this section:

(1) n=N(Y ) is the inverse function of Y (n) = lnn+ 1
2n2 for n>1;

(2) y(x;Y ) =−ln
[
cos2

(√
eY

2 (x− 1
2 )
)]

+Y ;

(3) Y ∗= 1
2 ( 1

2 +ln2π2), Y ∗∗= 1
8 (3+2ln2π2), Y ∗∗∗= 1

16 (7+2ln2π2);

(4) σ∗=N
(
y(0;Y ∗)

)
.

Remark 3.1. The notations defined above will be illustrated in the proof of Lemma
3.1. Note that Y ∗>Y ∗∗>Y ∗∗> 1

2 , Y ∗∗= 1
2 ( 1

2 +Y ∗) and Y ∗∗∗= 1
2 ( 1

2 +Y ∗∗).

Theorem 3.1. Assuming that b(x)∈L∞(0,1), 1
8 b̄≤

1
4 (Y ∗− 1

2 ) and σ0≥σ∗, then
there is a constant τ∗= τ∗(σ0)>0 which only depends on σ0, such that for any τ ≥
τ∗, P2 admits a supersonic-vs-subsonic solution (v,n)∈C 1

2 [0,1]×W 2,∞(0,1) and n≥
N(Y ∗∗∗)>1 over [0,1].

Since the first equation of (3.3) is degenerate at the boundary, we consider the
following approximate system

[(
kvk−

1

vk

)
(vk)x

]
x

+
1

τ
(vk)x=

1

vk
−nk−b(x),

[( 1

nk
− 1

n3
k

)
(nk)x

]
x
−
( 1

τnk

)
x

=nk+b(x)− 1

vk
, x∈ (0,1),

vk(0) =vk(1) = 1, nk(0) =σ0,

(3.5)

where 1<k<2 is a constant. For simplicity of notations, we omit the subscript k and
denote the solution of (3.5) by (v,n).

Lemma 3.1. Assuming that b(x)∈L∞(0,1), 1
8 b̄≤

1
4 (Y ∗− 1

2 ) and σ0≥σ∗, then there
is a constant τ∗= τ∗(σ0)>0 which only depends on σ0, such that for any τ ≥ τ∗ and
k∈ (1,2), (3.5) admits a solution (v,n)∈W 2,∞(0,1)×W 2,∞(0,1) which satisfies (3.4)
and v≥1, n≥N(Y ∗∗∗)>1 over [0,1].

Proof. We split the proof into four steps.

Step 1. In this step, we reformulate our problem by using topological degree method.
For σ0≥σ∗, define

X=
{

(v,n)∈C[0,1]×C[0,1]
}
,

D=
{

(v,n)∈X, m<v<M, λ<n<Λ
}
,

where

Λ =σ0 +1, m= max{ 1

λ
,

√
1
k +1

2
}, M = 2+

1

τ
+

√
(1+

1

τ
)2 +4(σ0 + b̄), (3.6)

and λ is a given constant with a size in (1, 3
2 )
⋂

(1,N(Y ∗∗∗)). Then D is a bounded and
open subset of X, and

∂D=
{

(v,n)∈X, m≤v≤M, λ≤n≤Λ, and ∃x∈ [0,1],

s.t : v(x) =m or v(x) =M n(x) =λ or n(x) = Λ
}
.
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Taking τ∗1 >0 such that M
τ∗1
≤fσ0( 3

2 ), then for any (ṽ,ñ)∈ D̄ we have

0<
1

τ

∫ 1

0

ṽ(x)− 1

ñ(x)
dx≤ 1

τ

∫ 1

0

ṽ(x)dx≤M
τ
≤M
τ∗1
≤fσ0(

3

2
)<fσ0(λ),

for any τ ≥ τ∗1 . Assume that τ ≥ τ∗1 , then for any (ṽ,ñ)∈ D̄, there exists a unique σ̃1∈
(λ,σ0), such that

fσ0
(σ̃1) =

1

τ

∫ 1

0

ṽ(x)− 1

ñ(x)
dx. (3.7)

Define the operator Γ : D̄→X, (ṽ,ñ) 7→ (v,n) by solving
[(
kṽ− 1

ṽ

)
vx
]
x

+ 1
τ vx= 1

ṽ − ñ−b(x),[(
1
ñ−

1
ñ3

)
nx
]
x

+ 1
τñ2nx= ñ+b(x)− 1

ṽ , x∈ (0,1),

v(0) =v(1) = 1, n(0) =σ0, n(1) = σ̃1,

where σ̃1 is defined in (3.7). Then Γ : D̄→X is a compact and continuous operator.
The following proof in this step is similar to the proof in Lemma 2.1: by the theory

of topological degree, we prove that for any ε∈ (0,1] and (v,n)∈∂D, (v,n) can not be
a solution of 

[(
kv− 1

v

)
vx
]
x

+ 1
τ vx= ε

(
1
v −n−b(x)

)
,[(

1
n−

1
n3

)
nx
]
x
−
(

1
τn

)
x

= ε
(
n+b(x)− 1

v

)
, x∈ (0,1),

v(0) =v(1) = 1, n(0) =σ0, n(1) =σ0−ε(σ0−σ1), σ̂1,

(3.8)

where fσ0(σ1) = 1
τ

∫ 1

0
v(x)− 1

n(x)dx and obviously σ̂1∈ [σ1,σ0]. Due to the standard max-

imum principle of elliptic equations, it is easy to check that

n≤max{σ0,σ̂1}≤σ0<Λ, and v≥1>m.

Step 2. In this step, we estimate the upper bound of v in (3.8). Setting (kv− 1
v )vx+

1
τ v=E, then we have 

(
kv− 1

v

)
vx=E− v

τ ,

Ex= ε
(

1
v −n−b(x)

)
, x∈ (0,1),

v(0) =v(1) = 1.

(3.9)

Since v≥1 and n≥λ>1, we have 1
v <n. Therefore Ex<0 over (0,1). By a simple

monotonicity analysis, we can verify that there exists a unique T ∈ (0,1), such that
v(T ) = max

x∈(0,1)
v(x), v̄, vx>0 over (0,T ), vx<0 over (T,1), and E(T ) = 1

τ v̄. Indeed, if

there is a x̂∈ (0,1) where v assumes its minimum, then there are ε1, ε2∈ (0,1) such that
E< 1

τ v over (ε1,x̂), E> 1
τ v over (x̂,ε2), E(x̂) = 1

τ v(x̂) and vx(x̂) = 0. Since Ex<0 over
(0,1), there exists a ε3∈ (x̂,ε2), such that E(x)< 1

τ v(x), x∈ (x̂,ε3), which contradicts
E> 1

τ v over (x̂,ε2). Hence there is no minimum point of v over (0,1). As a result, there
is only one critical point T ∈ (0,1) and v assumes its maximum at T .
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Integrating the first equation of (3.9) over (0,T ) we obtain

1

2
kv̄2− ln v̄− k

2
=

∫ T

0

E(x)− v(x)

τ
dx≤E(0)T ≤E(0). (3.10)

Due to the second equation of (3.9) we have

E(0) =E(T )+

∫ 0

T

Ex(x)dx

=E(T )+

∫ T

0

ε
(
n(x)+b(x)− 1

v(x)

)
dx

≤ v̄
τ

+ n̄+ b̄

≤ v̄
τ

+σ0 + b̄. (3.11)

Combining (3.11) and (3.10) we further have

1

2
kv̄2≤ ln v̄+

k

2
+
v̄

τ
+σ0 + b̄≤ v̄−1+

k

2
+
v̄

τ
+σ0 + b̄,

therefore

v̄≤
1+ 1

τ +
√

(1+ 1
τ )2 +2k(σ0 + b̄+ k

2 −1)

k
<2+

1

τ
+

√
(1+

1

τ
)2 +4(σ0 + b̄) =M.

Step 3. In this step, we consider the second equation in (3.8) without damping,
which will be used to estimate the lower bound of n. Consider

[(
1
w −

1
w3

)
wx
]
x

= ε
(
w+b(x)− 1

v

)
, x∈ (0,1),

w(0) =σ0, w(1) = σ̂1,
(3.12)

where ε, v(x), b(x), σ0, σ̂1 are from (3.8). We prove that (3.12) admits a solution which
has a lower bound w>1, topological method will be employed.

First, we define X∗={w∈C[0,1]}, D∗={w∈X∗, µ<w<w̄}, where w̄=σ0 +1 and
µ∈ (1,N(Y ∗∗)) is a constant. Then D∗ is a bounded and open subset of X∗, and

∂D∗={w∈X∗, µ≤w≤ w̄, and ∃x∈ [0,1] s.t : w(x) =µ or w(x) = w̄}.

Define Γ∗ :D∗→X∗, w̃ 7→w by solving{[(
1
w̃ −

1
w̃3

)
wx
]
x

= ε
(
w̃+b(x)− 1

v

)
, x∈ (0,1),

w(0) =σ0, w(1) = σ̂1,

then Γ∗ is a compact and continuous operator.
Similar to the analysis in the previous section, it suffices to prove that for any

t∈ (0,1] and w∈∂D∗, w can not be a solution of
[(

1
w −

1
w3

)
wx
]
x

= tε
(
w+b(x)− 1

v

)
, x∈ (0,1),

w(0) =σ0, w(1) = σ̄1,
(3.13)
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where σ̄1 =σ0− t(σ0− σ̂1) =σ0− tε(σ0−σ1)∈ [σ1,σ0].

By the standard maximum principle, we have that w≤σ0<w̄. Now we estimate
the lower bound of w and prove that w>µ. Setting Z= lnw+ 1

2w2 , then there is an
inverse function w=N(Z) since w≥µ>1. We also have that w≤eZ . Hence{

Zxx= tε
(
N(Z)+b(x)− 1

v

)
≤eZ + b̄, x∈ (0,1),

Z(0) =Z0, Z(1) =Z1,

where Z0 = lnσ0 + 1
2σ2

0
, Z1 = lnσ̄1 + 1

2σ̄2
1
. It suffices to prove that Z≥Z> lnµ+ 1

2µ2 .

Setting Z̃(x) =Z(x)+x(Z0−Z1)− 1
2 b̄x(x−1), x∈ (0,1), then{

Z̃xx≤eZ̃−x(Z0−Z1)+ 1
2 b̄x(x−1)≤eZ̃ , x∈ (0,1),

Z̃(0) = Z̃(1) =Z0.
(3.14)

Assume that Y (x) is the solution of{
Yxx=eY , x∈ (0,1),

Y (0) =Y (1) =Z0.
(3.15)

Applying the comparison principle to (3.15) and (3.14), we obtain that Y ≤ Z̃ over [0,1].

Since (3.15) is a symmetric system, the solution Y (x) must assume its minimum
value Y at x= 1

2 , and Yx( 1
2 ) = 0. On the contrary, if there exists a Y such that the

solution y(x) of the initial problem{
yxx=ey, x< 1

2 ,

y( 1
2 ) =Y , yx( 1

2 ) = 0,
(3.16)

is well-defined at x= 0 and y(0) =Z0, then y(x) is also a solution of (3.15). Nevertheless,
we can write the solution of (3.16) as

y(x) =−ln
[
cos2

(√eY

2
(x− 1

2
)
)]

+Y ,y(x;Y ).

To ensure that y(x;Y ) is well-defined at x= 0, we require that 1
2

√
eY

2 < π
2 , i.e, Y < ln2π2.

Since y(0;Y )→+∞ as Y → (ln2π2)−, we conclude that for any Z0>1 large enough,
(3.15) admits a unique solution Y (x) and the minimum value Y < ln2π2. And due to
the comparison principle, Y is monotone increasing with respect to Z0. Now taking
Y ∗= 1

2 ( 1
2 +ln2π2), Z∗0 =y(0;Y ∗), and σ∗=N(Z∗0 ), then once σ0≥σ∗, we have Z0≥Z∗0

and then (3.15) admits a solution Y (x) which has a minimum Y =Y ( 1
2 )∈ [Y ∗, ln2π2).

Finally, since Y (x)≤ Z̃(x) =Z(x)+x(Z0−Z1)− 1
2 b̄x(x−1), we have that

Z(x) = Z̃(x)−x(Z0−Z1)+
1

2
b̄x(x−1)

≥Y −(Z0−Z1)− 1

8
b̄

≥Y ∗−(Z0−Z1)− 1

8
b̄.
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Since σ̄1∈ [σ1,σ0], we have

Z0−Z1 =
(
lnσ0 +

1

2σ2
0

)
−
(
lnσ̄1 +

1

2σ̄2
1

)
≤
(
lnσ0 +

1

2σ2
0

)
−
(
lnσ1 +

1

2σ2
1

)
=fσ0

(σ1)

≤M
τ
,

where M is defined in (3.6). Therefore, if 1
8 b̄≤

1
4 (Y ∗− 1

2 ), then there exists a τ∗2 such

that for any τ ≥max{τ∗1 ,τ∗2 }, we have (Z0−Z1)+ 1
8 b̄≤

M
τ + 1

8 b̄≤
1
2 (Y ∗− 1

2 ), hence

Z(x)≥Y ∗−(Z0−Z1)− 1

8
b̄≥ 1

2
(
1

2
+Y ∗),Y ∗∗=

1

8
(3+2ln2π2)>

1

2
.

Since µ∈ (1,N(Y ∗∗)), we have lnµ+ 1
2µ2 ∈ ( 1

2 ,Y
∗∗). Now we have proved that when σ0≥

σ∗, τ ≥max{τ∗1 ,τ∗2 } and 1
8 b̄≤

1
4 (Y ∗− 1

2 ), the solution of (3.13) satisfies µ<N(Y ∗∗)≤
w≤σ0<w̄, which contradicts w∈∂D∗. Hence (3.12) admits a solution w∈D∗, and
w≥N(Y ∗∗).

Step 4. In this step, we estimate the lower bound of n in (3.8). We prove that n>λ
when τ�1 by perturbation. Assume that σ0≥σ∗, τ ≥max{τ∗1 ,τ∗2 }, 1

8 b̄≤
1
4 (Y ∗− 1

2 ), w
is the solution of (3.12) and n is from (3.8). Taking z1 = lnn+ 1

2n2 , z2 = lnw+ 1
2w2 , then

n=N(z1), w=N(z2) and{(
z1

)
xx
−
(

1
τN(z1)

)
x

= ε
(
N(z1)+b− 1

v

)
, x∈ (0,1),

z1(0) =Z0, z1(1) = Ẑ1,

{(
z2

)
xx

= ε
(
N(z2)+b− 1

v

)
, x∈ (0,1),

z2(0) =Z0, z2(1) = Ẑ1,

where Z0 = lnσ0 + 1
2σ2

0
and Ẑ1 = lnσ̂1 + 1

2σ̂2
1
. Taking z=z1−z2, then{

zxx−
(

1
τN(z1)

)
x

= ε
(
N(z1)−N(z2)

)
, x∈ (0,1),

z(0) =z(1) = 0.

Multiplying the above equation by z and integrating by parts, we have∫ 1

0

z2
xdx=−ε

∫ 1

0

(
N(z1)−N(z2)

)
zdx− 1

τ

∫ 1

0

( 1

N(z1)

)
x
zdx.

Since N(z) is increasing about z, we have that∫ 1

0

z2
xdx≤−

1

τ

∫ 1

0

( 1

N(z1)

)
x
zdx

=
1

τ

∫ 1

0

1

N(z1)
zxdx

≤ 1

2

∫ 1

0

z2
xdx+

1

2τ2
,
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hence |z|≤ 1
τ by Poincare’s inequality. Therefore, there is a τ∗3 >0 such that for any

τ ≥max{τ∗1 ,τ∗2 ,τ∗3 }, τ∗, |z|= |z1−z2|≤ 1
2 (Y ∗∗− 1

2 ).
Since w≥N(Y ∗∗), we have z2 = lnw+ 1

2w2 ≥Y ∗∗. Hence

z1≥z2−
1

2
(Y ∗∗− 1

2
)≥ 1

2
(Y ∗∗+

1

2
),Y ∗∗∗=

1

16
(7+2ln2π2)>

1

2
,

as a result n≥N(Y ∗∗∗)>λ>1. Similar to the discussions in Step 1, we conclude that
(3.5) admits a solution (v,n)∈D which satisfies v≥1, n≥N(Y ∗∗∗) over (0,1). Due to
the standard regularity theory, we have (v,n)∈W 2,+∞(0,1)×W 2,+∞(0,1).

Remark 3.2. Different form the proof of Lemma 2.1, where a large enough boundary
data σ0 could bring us a desired lower bound of ñ, in this section, the magnitude of the
right side of the second equation in (3.8) mainly depends on the magnitude of n for fixed
b and ε since 1

v ≤1. Therefore, for large boundary data σ0, n decreases dramatically
around the boundary, hence it is not an easy task to obtain the desired lower bound
of n. Due to this reason, we adopt a different and tedious proof and the conclusion of
Theorem 3.1 is quite different from that in Theorem 2.1.

Proof. (Proof of Theorem 3.1.) Now we use the compactness method in [20] to
obtain the solution of (3.3). Let (vk,nk) be a solution of (3.5) obtained in Lemma 3.1.
Multiplying (vk−1) to the first equation in (3.5) and integrating by parts, we obtain

4

9
k

∫ 1

0

vk+1

vk
|((vk−1)

3
2 )x|2dx+(k−1)

∫ 1

0

|(vk)x|2

vk
dx=−

∫ 1

0

(
1

vk
−nk−b)(vk−1)dx.

By the standard energy estimate and the uniform boundness of vk, nk in L∞(0,1) we
have

‖((vk−1)
3
2 )x‖L2(0,1)≤C,

where (and in the following proof) C is independent of k. Noting that ((vk−1)2)x=
4
3 (vk−1)

1
2 ((vk−1)

3
2 )x, we have by using the boundness of vk that

‖(vk−1)2‖H1
0 (0,1)≤C. (3.17)

Next, similar to the proof in Theorem 2.1 we could obtain that

‖nk‖H1(0,1)≤C. (3.18)

The estimates in (3.17) and (3.18) imply that there is a subsequence of k (which is still
denoted by k) such that as k→1+,

(vk−1)2⇀ (v−1)2 weakly in H1
0 (0,1),

nk⇀n weakly in H1(0,1),

and

‖(v−1)2‖H1
0 (0,1)≤C, ‖n‖H1(0,1)≤C.

In similar fashion to [20], we could prove that (v,n)∈C 1
2 [0,1]×W 2,+∞(0,1), v(x)>1

over (0,1) and (v,n) is a weak solution of (3.3). Meanwhile, duo to the fact that the
imbedding from H1(0,1) to C[0,1] is compact, we conclude that n≥N(Y ∗∗∗) over [0,1]
and (3.4) hold.
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3.2. Ill-posedness. This subsection is devoted to the proof of non-existence of
supersonic-vs-subsonic solution to (3.1) when the semiconductor effect is very weak.

Theorem 3.2. There is no supersonic-vs-subsonic solution to (3.1) if b(x) 6≡0, τ�1
and σ0>1 is close to 1.

Proof. Assume that (v,n,E) is a supersonic-vs-subsonic solution of (3.1) which
satisfies (3.2). We have shown that n(1) =σ1<σ0. Since E keeps decreasing in (0,1), we
can verify that there is only one point T ∈ (0,1] such that E(T ) = 1

τn(T ) , and n reaches

its minimum at T . Since the case T = 1 is trivial in the following proof, we assume
that T ∈ (0,1). Set n=n(T ). We have that nx<0 over (0,T ), nx>0 over (T,1) and
n(x)≤σ0 over [0,1].

From (3.1) we have

(n2−1)(n+b− 1
v )

n3
nx= (E− 1

τn
)Ex. (3.19)

Integrating (3.19) over (0,T ) we obtain that

1

2
E2(0)− 1

2
E2(T )+

1

τ

∫ T

0

1

n
Exdx=

∫ T

0

(n2−1)(n+b− 1
v )

n3
(−nx)dx

≤
∫ T

0

(n2−1)(n+ b̄)

n3
(−nx)dx

=

∫ σ0

n

(n2−1)(n+ b̄)

n3
dn

≤
∫ σ0

1

(n2−1)(n+ b̄)

n3
dn. (3.20)

Similarly, integrating (3.19) over (T,1) we have

1

2
E2(1)− 1

2
E2(T )− 1

τ

∫ 1

T

1

n
Exdx=

∫ 1

T

(n2−1)(n+b− 1
v )

n3
nxdx

≤
∫ 1

T

(n2−1)(n+ b̄)

n3
nxdx

=

∫ σ1

n

(n2−1)(n+ b̄)

n3
dn

≤
∫ σ0

1

(n2−1)(n+ b̄)

n3
dn. (3.21)

And due to the third equation of (3.1), we further have

E(0)+
(
−E(1)

)
=

∫ 1

0

n+b− 1

v
dx≥

∫ 1

0

bdx>0,

hence

E2(0)+E2(1)≥ 1

2

(
E(0)+(−E(1))

)2≥ 1

2

(∫ 1

0

bdx
)2
. (3.22)
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Combining (3.20), (3.21) with (3.22) we obtain

1

2

(∫ 1

0

b(x)dx
)2≤E2(0)+E2(1)

≤4

∫ σ0

1

(n2−1)(n+ b̄)

n3
dn+2E2(T )− 2

τ

∫ T

0

1

n
Exdx+

2

τ

∫ 1

T

1

n
Exdx

≤4

∫ σ0

1

(n2−1)(n+ b̄)

n3
dn+

2

τ2
+

2

τ

(
E(0)−E(1)

)
≤4

∫ σ0

1

(n2−1)(n+ b̄)

n3
dn+

2

τ2
+

2

τ

(
σ0 + b̄

)
.

(3.23)

Since (n2−1)(n+b̄)
n3 ≤σ0 + b̄, we could draw a contradictory conclusion to (3.23) if σ0−1�

1 and τ�1. So there is no interior-supersonic-fully-subsonic solution to (3.1) if b(x) 6≡0,
τ�1 and σ0>1 is close to 1.

4. Interiorly-subsonic-vs-fully-supersonic flow

In this section, we consider the subsonic-vs-supersonic flow of (1.5). First we assume
that n(0) =σ0∈ (0,1). We use the velocity equation of holes. Taking u(x) = 1

n(x) , then

(1.5) is equivalent to 

(1

ρ
− 1

ρ3

)
ρx=E− 1

τρ
,

(
u− 1

u

)
ux=−E+

u

τ
, x∈ (0,1),

Ex=ρ− 1
u−b(x),

(4.1)

and u(0) = 1
σ0

,a0>1. We investigate the existence and non-existence of solutions of
(4.1) such that

ρ(0) =ρ(1) = 1, ρ(x)>1, ∀x∈ (0,1); u(0) =a0, u(x)>1, ∀x∈ [0,1]. (4.2)

As the previous sections, this problem is equivalent to:

P3: Finding the solution (ρ,u) of
[(

1
ρ−

1
ρ3

)
ρx
]
x

+
(

1
τρ

)
x

=ρ− 1
u−b(x),[(

u− 1
u

)
ux
]
x
− 1
τ ux= 1

u +b(x)−ρ, x∈ (0,1),

ρ(0) =ρ(1) = 1, u(0) =a0,

(4.3)

such that (4.2) and

ga0(u(1)) =ga0(a1) :=
(1

2
a2

0− lna0

)
−
(1

2
a2

1− lna1

)
=

1

τ

∫ 1

0

1

ρ(x)
−u(x)dx, (4.4)

hold, where a1 =u(1).
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4.1. Well-posedness. In this subsection, we are going to prove the existence of
subsonic-vs-supersonic solution to P3, as well as their regularities.

Theorem 4.1. For any b(x)∈L∞(0,1), b≥1, τ >0 and u>1, there exists a constant
a∗>u, which only depends on b(x), τ and u, such that for any a0≥a∗, P3 admits a

subsonic-vs-supersonic solution (ρ,u)∈C 1
2 [0,1]×W 2,∞(0,1) such that u≥u over [0,1].

Consider the following approximate system
[(

1
ρj
− j
ρ3j

)
(ρj)x

]
x

+
(

1
τρj

)
x

=ρj− 1
uj
−b(x),[(

uj− 1
uj

)
(uj)x

]
x
− 1
τ (uj)x= 1

uj
+b(x)−ρj , x∈ (0,1),

ρj(0) =ρj(1) = 1, uj(0) =a0,

(4.5)

where 0<j<1 is a constant. Also, we omit the subscript j and denote the solution of
(4.5) by (ρ,u).

Lemma 4.1. For any b(x)∈L∞(0,1), b≥1, j∈ (0,1), τ >0 and u>1, there exists a
constant a∗>u, which only depends on b(x), τ and u, such that for any a0≥a∗, (4.5)
admits a solution (ρ,u)∈W 2,∞(0,1)×W 2,∞(0,1) which satisfies (4.2), (4.4) and u≥u
over [0,1].

Proof. For the given τ >0, set h(u) = 1
2u

2− lnu− 2
τ u for u≥ 1

τ +
√

1
τ2 +1. It is

easy to verify that h admits an inverse function u=h−1(·). Define

X=
{

(ρ,u)∈C[0,1]×C[0,1]
}
,

D=
{

(ρ,u)∈X, m<ρ<M, λ<u<Λ
}
,

where

λ=
u+1

2
, m= max

{ 1

λ
,

√
j+1

2

}
, M = b̄+2,

Λ = max
{
ā1,h

−1
(1

2
a2

0− lna0 +2(1+ b̄)
)}

+1,

and ā1>a0 is defined by

ga0(ā1) =−1

τ
ā1. (4.6)

Since ga0(a) is convex about a, ā1 is well-defined. It is easy to check that D is a bounded
and open subset of X, and

∂D=
{

(ρ,u)∈X, m≤ρ≤M, λ≤u≤Λ, and ∃x∈ [0,1],

s.t : ρ(x) =m or ρ(x) =M or u(x) =λ or u(x) = Λ
}
.

For any (ρ̃, ũ)∈ D̄, since

1

τ

∫ 1

0

1

ρ̃(x)
− ũ(x)dx<0,

there is a unique ã1>a0, such that

ga0(ã1) =
1

τ

∫ 1

0

1

ρ̃(x)
− ũ(x)dx. (4.7)
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Define Γ : D̄→X, (ρ̃, ũ) 7→ (ρ,u) by solving

[(1

ρ̃
− j

ρ̃3

)
ρx
]
x
− 1

τ ρ̃2
ρx= ρ̃− 1

ũ
−b(x),

[(
ũ− 1

ũ

)
ux
]
x
− 1

τ
ux=

1

ũ
+b(x)− ρ̃, x∈ (0,1),

ρ(0) =ρ(1) = 1, u(0) =a0, u(1) = ã1,

where ã1>a0 is defined in (4.7). Then Γ : D̄→X is a compact and continuous operator.
Due to the same analysis as Lemma 2.1, it suffices to prove that for any ε∈ (0,1] and
(ρ,u)∈∂D, (ρ,u) can not be a solution of

[(1

ρ
− j

ρ3

)
ρx
]
x

+
( 1

τρ

)
x

= ε
(
ρ− 1

u
−b(x)

)
,

[(
u− 1

u

)
ux
]
x
− 1

τ
ux= ε

( 1

u
+b(x)−ρ

)
, x∈ (0,1),

ρ(0) =ρ(1) = 1, u(0) =a0, u(1) =a0 +ε(a1−a0), â1,

where ga0(a1) = 1
τ

∫ 1

0
1

ρ(x)−u(x)dx and obviously â1∈ (a0,a1]. Using the standard max-

imum principle of elliptic equations, it is easy to verify that

m<1≤ρ(x)≤1+ b̄<M, x∈ [0,1].

Now we estimate the lower bound of u. Setting (u− 1
u )ux− 1

τ u=−E, then we have


(
u− 1

u

)
ux=−E+ u

τ ,

Ex= ε
(
ρ− 1

u−b(x)
)
, x∈ (0,1),

u(0) =a0, u(1) = â1.

(4.8)

Set u(T ) = inf
x∈(0,1)

u(x). If T = 0, then u(x)≥a0≥u>λ. If T ∈ (0,1), then ux(T ) = 0 and

hence E(T ) = 1
τ u(T )≤ 1

τ a0. For any x∈ (0,1], integrating the first equation of (4.8) over
(0,x) we have

1

2
u2(x)− lnu(x) =

1

2
a2

0− lna0−
∫ x

0

E(ξ)− 1

τ
u(ξ)dξ

≥ 1

2
a2

0− lna0−
∫ x

0

E(ξ)dξ. (4.9)

Since

|E(x)|= |E(T )+

∫ x

T

Ex(ξ)dξ|

= |1
τ
u(T )+

∫ x

T

ε
(
ρ(ξ)− 1

u(ξ)
−b(ξ)

)
dξ|

≤ 1

τ
a0 +2(1+ b̄), (4.10)
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we have

1

2
u2(x)− lnu(x)≥ 1

2
a2

0− lna0−
∫ x

0

E(ξ)dξ

≥ 1

2
a2

0− lna0−
1

τ
a0−2(1+ b̄). (4.11)

Taking a∗1>1 such that

1

2
(a∗1)2− lna∗1−

1

τ
a∗1−2(1+ b̄) =

1

2
u2− lnu,

and assuming that a0≥a∗1, then

1

2
u(x)2− lnu(x)≥ 1

2
a2

0− lna0−
1

τ
a0−2(1+ b̄)

≥ 1

2
(a∗1)2− lna∗1−

1

τ
a∗1−2(1+ b̄)

=
1

2
u2− lnu, (4.12)

therefore u≥u>λ. Set a∗= max
{
a∗1,

1
τ +
√

1
τ2 +1

}
and assume that a0≥a∗.

Now we estimate the upper bound of u. Set ū=u(T ∗) = max
x∈[0,1]

u(x). If T ∗= 1, then

ū≤ â1≤a1, hence

ga0(a1) =
1

τ

∫ 1

0

1

ρ
−udx≥−1

τ
a1.

A simple analysis of ga0(a1)+ 1
τ a1 shows that a1≤ ā1, where ā1 is defined in (4.6). Hence

ū≤a1≤ ā1<Λ. If T ∗∈ (0,1), then ux(T ∗) = 0 and hence E(T ∗) = 1
τ u(T ∗) = 1

τ ū.
Combining the first identity in (4.9) with (4.10) substituted T by T ∗, we have

1

2
u(x)2− lnu(x) =

1

2
a2

0− lna0−
∫ x

0

E(ξ)− 1

τ
u(ξ)dξ

≤ 1

2
a2

0− lna0 +

∫ 1

0

|E(ξ)|dξ+
1

τ
ū

≤ 1

2
a2

0− lna0 +
1

τ
ū+2(1+ b̄)+

1

τ
ū, (4.13)

hence

h(ū)≤ 1

2
a2

0− lna0 +2(1+ b̄). (4.14)

Since ū≥a0≥a∗≥ 1
τ +
√

1
τ2 +1, we have

ū≤h−1
(1

2
a2

0− lna0 +2(1+ b̄)
)
<Λ. (4.15)

Based on the analysis above, we obtain that m<ρ<M, λ<u<Λ when a0≥a∗,
which contradicts (ρ,u)∈∂D. Similar to Lemma 2.1, we conclude that (4.5) admits
a solution (ρ,u)∈D which satisfies (4.4). Due to the regularity theory, we have that
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(ρ,u)∈W 2,+∞(0,1)×W 2,+∞(0,1) and u≥u over [0,1]. Finally, using the same method
in [20] to estimate the lower bound of ρ, we have

ρ(x)≥1+εsin(πx)>1, ∀x∈ (0,1),

where ε>0 is a small constant independent of j.

Proof. (Proof of Theorem 4.1.) The proof is similar to that of the proofs of
Theorem 2.1 and Theorem 3.1. First, the following estimates could be obtained

‖(ρj−1)2‖H1
0 (0,1)≤C, ‖uj‖H1(0,1)≤C. (4.16)

Therefore, there is a subsequence of j (which is still denoted by j) such that as j→1−,

(ρj−1)2⇀ (ρ−1)2 weakly in H1
0 (0,1),

uj⇀u weakly in H1(0,1),

and

‖(ρ−1)2‖H1
0 (0,1)≤C, ‖u‖H1(0,1)≤C.

Then, in similar fashion to [20], we could prove that (ρ,u)∈C 1
2 [0,1]×W 2,+∞(0,1) and

(ρ,u) is a weak solution of (4.3). Also, we could verify that ρ>1 over (0,1), u≥u over
[0,1], and (4.4) hold.

4.2. Ill-posedness. This subsection is devoted to the proof of non-existence of
subsonic-vs-supersonic solution of (4.1) in certain cases.

Theorem 4.2. There is no subsonic-vs-supersonic solution of (4.1) in the following
three cases: (i) ∀τ >0, b̄<1 and a0�1; (ii) ∀τ >0, b(x)≡0 and ∀a0>1; (iii) τ = +∞,
b(x) 6≡0 and a0−1�1.

Proof. Assume that (ρ,u,E) is a solution of (4.1) such that 1<ρ(x)≤1+ b̄, n>1
for x∈ (0,1). Since (ii) is a direct corollary of Theorem 1.3 in [21], we omit the proof
here.

First we prove (i). Due to (4.1) we have(1

2
u2(x)− lnu(x)

)
−
(1

2
a2

0− lna0

)
=−

∫ x

0

E(ξ)− 1

τ
u(ξ)dξ≥−

∫ x

0

E(ξ)dξ.

Set E=E(T ) = inf
x∈[0,1]

E(x). Since ρ(x)>1 for x∈ (0,1) and ρ(1) = 1, there must be a

point x̂ close to 1− such that E≤E(x̂)< 1
τρ(x̂) <

1
τ in view of (4.1). Hence

E(x) =E+

∫ x

T

Ex(ξ)dξ≤ 1

τ
+

∫ x

T

ρ− 1

u
−bdξ≤ 1

τ
+2(1+ b̄),

and

1

2
u2(x)− lnu(x)≥ 1

2
a0− lna0−

(1

τ
+2(1+ b̄)

)
.

Therefore, when b̄<1 and a0�1, we have u�1 and hence 1
u + b̄<1≤ρ. Multiplying

the first equation of (4.3) by (ρ−1) and integrating by parts, we have∫ 1

0

(1

ρ
− 1

ρ3

)
|ρx|2dx=−

∫ 1

0

(
ρ− 1

u
−b
)(
ρ−1

)
dx. (4.17)
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So if b̄<1 and a0�1 such that 1
u + b̄<1≤ρ, then the right side of (4.17) is negative,

which contradicts the left side.

Now we prove (iii). When τ = +∞, we have by combining the first and the second
equations in (4.1) that

lnρ+
1

2ρ2
= lnu− 1

2
u2 +

1

2
a2

0− lna0 +
1

2
, (4.18)

hence

lnρ≤−1

2
+

1

2
a2

0− lna0 +
1

2
=

1

2
a2

0− lna0, (4.19)

and u(1) =a0, ρ(x)≤e 1
2a

2
0−lna0 , u(x)<a0 over (0,1).

Let x1∈ (0,1) be the first point such that u reaches its minimum, and x2∈ (0,1) the
last point. Then u(x1)≥u, u(x2)≥u, where u= inf

x∈[0,1]
u(x)>1. And E(x1) =E(x2) = 0,

ux<0, E >0 over (0,x1), ux>0, E <0 over (x2,1). From (4.1) we have

(u2−1)( 1
u +b−ρ)

u
ux=EEx. (4.20)

Integrating (4.20) over (0,x1), we have

1

2
E2(0) =

∫ x1

0

(u2−1)( 1
u +b−ρ)

u
(−ux)dx

≤
∫ x1

0

(u2−1)( 1
u + b̄)

u
(−ux)dx

=

∫ a0

u(x1)

(u2−1)( 1
u + b̄)

u
du

≤
∫ a0

1

(u2−1)( 1
u + b̄)

u
du. (4.21)

Then integrating (4.20) over (x2,1), we have

1

2
E2(1) =

∫ 1

x2

(u2−1)( 1
u +b−ρ)

u
uxdx

≤
∫ 1

x2

(u2−1)( 1
u + b̄)

u
uxdx

=

∫ a0

u(x2)

(u2−1)( 1
u + b̄)

u
du

≤
∫ a0

1

(u2−1)( 1
u + b̄)

u
du. (4.22)

Similar to the previous sections, we obtain

E(0)+
(
−E(1)

)
=

∫ 1

0

b+
1

u
−ρdx=

∫ 1

0

bdx−
∫ 1

0

ρ− 1

u
dx. (4.23)
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Using again the identity (4.18), we have(
lnρ+

1

2ρ2

)
−
(
lna0 +

1

2a2
0

)
= lnu− 1

2
u2 +

1

2
a2

0−2lna0 +
1

2
− 1

2a2
0

≤−1

2
+

1

2
a2

0−2lna0 +
1

2
− 1

2a2
0

=
1

2
a2

0−2lna0−
1

2a2
0

.

If ρ(x0)>a0 at some points x0∈ (0,1), then using differential mean value theorem at
these points we have

(
lnρ+

1

2ρ2

)
−
(
lna0 +

1

2a2
0

)
=
ξ2−1

ξ3

(
ρ−a0

)
≤ 1

2
a2

0−2lna0−
1

2a2
0

,

where ξ∈ (a0,ρ). Hence

ρ≤a0 +
(1

2
a2

0−2lna0−
1

2a2
0

) ξ3

ξ2−1

≤a0 +
(1

2
a2

0−2lna0−
1

2a2
0

) ρ3

a2
0−1

≤a0 +

1
2a

2
0−2lna0− 1

2a20

a2
0−1

e
3
2a

3
0−3lna0 . (4.24)

If x∈ (0,1) such that ρ(x)≤a0, then (4.24) still holds at these x. Applying L’Hospital’s
rule to (4.24) we obtain that

1
2a

2
0−2lna0− 1

2a20

a2
0−1

→0, as a0→1+,

hence ρ→1+ as a0→1+ in view of (4.24) and

0≤ρ− 1

u
≤ρ− 1

a0
→0+, as a0→1+.

Therefore, when a0−1>0 is small enough, we have by (4.23) that

E(0)+
(
−E(−1)

)
≥ 1

2

∫ 1

0

bdx>0. (4.25)

Combining (4.25), (4.21) and (4.22), we obtain∫ a0

1

(u2−1)( 1
u + b̄)

u
du≥ 1

4

(
E2(0)+E2(1)

)
≥ 1

8

(
E(0)+(−E(1))

)2
≥ 1

32

(∫ 1

0

bdx
)2
. (4.26)

Since
(u2−1)( 1

u +b̄)

u ≤ (a20−1)(1+b̄)
a0

, we could draw a contradictory conclusion to (4.26) if
σ0−1�1.
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5. Interiorly-supersonic-vs-fully-supersonic flow
This section is devoted to the supersonic-vs-supersonic flow. Assume that n(0) =

σ0∈ (0,1). We use the velocity equations both to electrons and holes by taking v(x) =
1

ρ(x) and u(x) = 1
n(x) , then (1.5) is equivalent to

(
v− 1

v

)
vx=E− v

τ
,(

u− 1

u

)
ux=−E+

u

τ
, x∈ (0,1),

Ex= 1
v −

1
u−b(x),

(5.1)

and u(0) = 1
σ0

,a0>1. We prove the existence and non-existence of solutions of (5.1)
such that

v(0) =v(1) = 1, v(x)>1, ∀x∈ (0,1); u(0) =a0, u(x)>1, ∀x∈ [0,1]. (5.2)

Also, the problem is equivalent to:

P4: Finding the solution (v,u) of

[(
v− 1

v

)
vx
]
x

+
1

τ
vx=

1

v
− 1

u
−b(x),[(

u− 1

u

)
ux
]
x
− 1

τ
ux=

1

u
+b(x)− 1

v
, x∈ (0,1),

v(0) =v(1) = 1, u(0) =a0,

(5.3)

such that (5.2) and

ga0(u(1)) =ga0(a1) =
1

τ

∫ 1

0

v(x)−u(x)dx, (5.4)

hold, where a1 =u(1) and ga0 is defined in (4.4).

5.1. Well-posedness. This subsection is devoted to the proof of the existence
of supersonic-vs-supersonic solutions for P4, as well as their regularities.

Theorem 5.1. For any b(x)∈L∞(0,1), b≥1, τ >0 and u>1, there exists a constant
a∗>u, which only depends on b(x), τ and u, such that for any a0≥a∗, P4 admits a

supersonic-vs-supersonic solution (v,u)∈C 1
2 [0,1]×W 2,∞(0,1) and u≥u over [0,1].

Consider the following approximate system

[(
kvk−

1

vk

)
(vk)x

]
x

+
1

τ
(vk)x=

1

vk
− 1

uk
−b(x),

[(
uk−

1

uk

)
(uk)x

]
x
− 1

τ
(uk)x=

1

uk
+b(x)− 1

vk
, x∈ (0,1),

vk(0) =vk(1) = 1, uk(0) =a0,

(5.5)

where 1<k<2 is a constant. Also, we omit the subscript k and denote the solution of
(5.5) by (v,u).

Lemma 5.1. For any b(x)∈L∞(0,1), b≥1, k∈ (1,2), τ >0 and u>1, there exists a
constant a∗>u, which only depends on b(x), τ and u, such that for any a0≥a∗, (5.5)
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admits a solution (v,u)∈W 2,∞(0,1)×W 2,∞(0,1) which satisfies (5.4) and v≥1, u≥u
over [0,1].

Proof. Define

X=
{

(v,u)∈C[0,1]×C[0,1]
}
,

D=
{

(v,u)∈X, m<v<M, λ<u<Λ
}
,

where

λ=
1+u

2
, Λ = ā1 +1, m=

1√
k

+1

2
,

M =
1

τ
+2+

√
(
1

τ
+1)2 +2(3+ b̄),

and ā1>1 is determined by

ga0(ā1) =−1

τ
ā1. (5.6)

It is easy to verify that ā1>a0 and D is a bounded and open subset of X, and

∂D=
{

(v,u)∈X, m≤v≤M, λ≤u≤Λ and ∃x∈ [0,1],

s.t : v(x) =m or v(x) =M or u(x) =λ or u(x) = Λ
}
.

For any (ṽ, ũ)∈ D̄, take ã1>1 such that

ga0(ã1) =
1

τ

∫ 1

0

ṽ(x)− ũ(x)dx. (5.7)

Take a∗1>1 such that 1
2 (a∗1)2− lna∗1− 1

τM = 1, and assume that a0≥a∗1. Since

1

τ

∫ 1

0

ṽ(x)− ũ(x)dx≤ 1

τ
M, (5.8)

we have

1

2
ã2

1− ln ã1 =
1

2
a2

0− lna0−
1

τ

∫ 1

0

ṽ(x)− ũ(x)dx

≥ 1

2
a2

0− lna0−
1

τ
M

≥ 1

2
(a∗1)2− lna∗1−

1

τ
M

= 1>
1

2
,

hence ã1 in (5.7) is well-defined and ã1>1.
Define Γ : D̄→X, (ṽ, ũ) 7→ (v,u) by solving

[(
kṽ− 1

ṽ

)
vx
]
x

+
1

τ
vx=

1

ṽ
− 1

ũ
−b(x),[(

ũ− 1

ũ

)
ux
]
x
− 1

τ
ux=

1

ũ
+b(x)− 1

ṽ
, x∈ (0,1),

v(0) =v(1) = 1, u(0) =a0, u(1) = ã1,
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then Γ : D̄→X is a compact and continuous operator. Similar to the proof of Lemma
2.1, it suffices to prove that for any ε∈ (0,1] and (v,u)∈∂D, (v,u) can not be a solution
of 

[(
kv− 1

v

)
vx
]
x

+
1

τ
vx= ε

(1

v
− 1

u
−b(x)

)
,[(

u− 1

u

)
ux
]
x
− 1

τ
ux= ε

( 1

u
+b(x)− 1

v

)
, x∈ (0,1),

v(0) =v(1) = 1, u(0) =a0, u(1) =a0 +ε(a1−a0), â1,

(5.9)

where a1>1 is determined by

ga0(a1) =
1

τ

∫ 1

0

v(x)−u(x)dx. (5.10)

First, due to the maximum principle, we have that v≥1>m. Now we estimate the
upper bound of v. Setting E1 = (kv− 1

v )vx+ 1
τ v, then

(
kv− 1

v

)
vx=E1−

1

τ
v,

E1x= ε
(1

v
− 1

u
−b(x)

)
, x∈ (0,1),

v(0) =v(1) = 1.

(5.11)

Let v̄=v(T1) = sup
x∈[0,1]

v(x). If T1 = 0 or T1 = 1, then v̄= 1<M . If T1∈ (0,1), then

vx(T1) = 0 and therefore E1(T1) = 1
τ v(T1) = 1

τ v̄. Hence for any x∈ (0,1) we have

E1(x) =

∫ x

T1

E1x(ξ)dξ+E1(T1) =

∫ x

T1

ε
( 1

v(ξ)
− 1

u(ξ)
+b(ξ)

)
dξ+E1(T1)≤2+ b̄+

1

τ
v̄.

Integrating the first equation of (5.11) over (0,x), we have

k

2
v2(x)− lnv(x)− k

2
=

∫ x

0

E1(ξ)− 1

τ
v(ξ)dξ≤

∫ 1

0

|E1(ξ)|dξ≤2+ b̄+
1

τ
v̄.

Due to the arbitrariness of x∈ (0,1), we obtain

1

2
v̄2− v̄− 1

τ
v̄≤ k

2
v̄2− ln v̄− 1

τ
v̄≤2+ b̄+

k

2
≤3+ b̄,

therefore

v̄≤1+
1

τ
+

√
(1+

1

τ
)2 +2(3+ b̄)<M.

Now we estimate the upper bound of u. By the maximum principle, we have that
u≤max{a0, â1}. If a1≤a0, then max{a0, â1}=a0, hence u≤a0<Λ. If a1>a0, then
max{a0, â1}= â1, hence u≤ â1≤a1. Since

ga0(a1) =
1

τ

∫ 1

0

v(x)−u(x)dx≥−1

τ
a1,
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we have that u≤a1≤ ā1<Λ, where ā1 is defined in (5.6).
Finally, we estimate the lower bound of u. Setting E2 =−(u− 1

u )ux+ 1
τ u, then

(
u− 1

u

)
ux=−E2 +

1

τ
u,

E2x= ε
(1

v
− 1

u
−b(x)

)
, x∈ (0,1),

u(0) =a0, u(1) = â1.

(5.12)

Assume that u̇=u(T2) = inf
x∈[0,1]

u(x). If T2 = 0, then u̇=a0≥u>λ. If T2 = 1, then a1<a0

and u̇= â1≥a1. Since

ga0(a1) =
1

τ

∫ 1

0

v(x)−u(x)dx≤ 1

τ
M,

we have

1

2
a2

1− lna1≥
1

2
a2

0− lna0−
1

τ
M.

Taking a∗1>1 such that 1
2 (a∗1)2− lna∗1− 1

τM = 1
2u

2− lnu, assuming that a0≥a∗1, then

1

2
a2

1− lna1≥
1

2
a2

0− lna0−
1

τ
M ≥ 1

2
(a∗1)2− lna∗1−

1

τ
M =

1

2
u2− lnu,

hence u̇≥a1≥u>λ. If T2∈ (0,1), then ux(T2) = 0 and hence E2(T2) = 1
τ u(T2) = 1

τ u̇. For
any x∈ (0,1), we have

E2(x) =

∫ x

T2

E2x(ξ)dξ+E2(T2) =

∫ x

T2

ε
( 1

v(ξ)
− 1

u(ξ)
−b(ξ)

)
dξ+E2(T2)≤2+ b̄+

1

τ
u̇.

Integrating the first equation in (5.12) over (0,x), we have

1

2
u2(x)− lnu(x) =

∫ x

0

−E2(ξ)+
1

τ
u(ξ)dξ+

1

2
a2

0− lna0

≥−
∫ 1

0

|E2(ξ)|dξ+
1

2
a2

0− lna0

≥−(2+ b̄+
1

τ
u̇)+

1

2
a2

0− lna0.

Due to the arbitrariness of x∈ (0,1), we have

1

2
u̇2− u̇+

1

τ
u̇≥ 1

2
a2

0− lna0−2− b̄,

therefore

u̇≥1− 1

τ
+

√
(1− 1

τ
)2 +a2

0−2lna0−4− b̄.

As a result, there is a a∗2>1 such that for any a0≥a∗2,

u̇≥1− 1

τ
+

√
(1− 1

τ
)2 +a2

0−2lna0−4− b̄

≥1− 1

τ
+

√
(1− 1

τ
)2 +(a∗2)2−2lna∗2−4− b̄

≥u>λ.



PENGCHENG MU, MING MEI, AND KAIJUN ZHANG 2035

Take a∗= max{a∗1,a∗2} and assume that a0≥a∗. We have proved that if (v,u)∈∂D
solves (5.9) for some ε∈ (0,1], then

m<v(x)<M, λ<u(x)<Λ, x∈ [0,1],

which contradicts (v,u)∈∂D. Therefore, (5.5) admits a solution (v,u)∈D which sat-
isfies (5.4). Due to the regularity theory and the discussions above, we have that
(v,u)∈W 2,+∞(0,1)×W 2,+∞(0,1) and u≥u over [0,1].

Proof. (Proof of Theorem 5.1.) First, similar to the proofs in Theorem 2.1 and
Theorem 3.1, we could obtain

‖(vk−1)2‖H1
0 (0,1)≤C, ‖uk‖H1(0,1)≤C. (5.13)

Therefore, there is a subsequence of k (which is still denoted by k) such that as k→1+,

(vk−1)2⇀ (v−1)2 weakly in H1
0 (0,1),

uk⇀u weakly in H1(0,1),

and

‖(v−1)2‖H1
0 (0,1)≤C, ‖u‖H1(0,1)≤C.

In similar fashion to [20], we could prove that (v,u)∈C 1
2 [0,1]×W 2,+∞(0,1), v>1 over

(0,1) and (v,u) is a weak solution of (5.3). Also, we could verify that u≥u over [0,1]
and (5.4) hold.

5.2. Ill-posensess. This subsection is for the proof of non-existence of
supersonic-vs-supersonic solution to (5.1) in certain cases as follows.

Theorem 5.2. There is no supersonic-vs-supersonic solution to (5.1) in the following
two cases: (i) ∀τ >0, b̄< 1

2 , and a0�1; (ii) b(x) 6≡0, τ = +∞ and a0−1�1.

Proof. Assume that (v,u,E) is a supersonic-vs-supersonic solution of (5.1). First
we prove (i). Assuming that v̄=v(T ) = sup

x∈[0,1]

v(x), then E(T ) = 1
τ v̄. Set u= inf

x∈[0,1]
u(x).

Multiplying the first equation of (5.1) by ((v−1)2)x and integrating over (T,1) we have∫ 1

T

v+1

2v
|
(
(v−1)2

)
x
|2dx=

∫ 1

T

(
E− 1

τ
v
)(

(v−1)2
)
x
dx

=−
∫ 1

T

(E− 1

τ
v)x(v−1)2dx

=

∫ 1

T

(
1

u
+b− 1

v
)(v−1)2dx+

1

τ

∫ 1

T

(v−1)2vxdx

=

∫ 1

T

(
1

u
+b− 1

v
)(v−1)2dx− (v̄−1)3

3τ

≤
∫ 1

T

(
1

u
+ b̄)(v−1)2dx

≤
∫ 1

T

(
1

u
+ b̄)2dx+

1

4

∫ 1

T

|
(
(v−1)2

)
x
|2dx, (5.14)
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where we have used Hölder’s inequality and Poincare’s inequality above. Since∫ 1

T

v+1

2v
|
(
(v−1)2

)
x
|2dx≥ 1

2

∫ 1

T

|
(
(v−1)2

)
x
|2dx, (5.15)

we obtain by combining (5.15) with (5.14) that∫ 1

T

|
(
(v−1)2

)
x
|2dx≤4

∫ 1

T

(
1

u
+ b̄)2dx≤4(

1

u
+ b̄)2.

Applying Sobolev’s inequality we further have

v(x)≤v(T )≤1+

√
2(

1

u
+ b̄).

Setting m= 1
u + b̄, then v≤1+

√
2m and 1

v ≥
1

1+
√

2m
over [T,1]. By (5.14) we have∫ 1

T

v+1

2v
|
(
(v−1)2

)
x
|2dx≤

∫ 1

T

(m− 1

1+
√

2m
)(v−1)2dx. (5.16)

If m< 1
2 , then

m− 1

1+
√

2m
<0,

which contradicts (5.16) since the left side of (5.16) is nonnegative. Hence if m= 1
u + b̄<

1
2 , there is no interior-supersonic-fully-supersonic solution to (5.1).

On the other hand, from (5.1) we have(1

2
u2(x)− lnu(x)

)
−
(1

2
a2

0− lna0

)
=−

∫ x

0

E(ξ)− 1

τ
u(ξ)dξ≥−

∫ x

0

E(ξ)dx.

Since v>1 over (0,1) and v(1) = 1, we have that when x is close to 1−, E(x)< 1
τ v(x)≤ 2

τ ,
hence E := min

x∈(0,1)
E(x)≤ 2

τ . Assume that E=E(T ∗), we have

E(x) =E+

∫ x

T∗
Ex(ξ)dξ<

2

τ
+ b̄+2,

hence

1

2
u2(x)− lnu(x)≥ 1

2
a2

0− lna0−(
2

τ
+ b̄+2).

Therefore, for any τ >0, b̄< 1
2 and a0�1 such that m= 1

u + b̄< 1
2 , there is no interior-

supersonic-fully-supersonic solution to (5.1).
Now we prove (ii). When τ = +∞, we have by (5.1) that

(
1

2
v2− lnv)− 1

2
= (

1

2
a2

0− lna0)−(
1

2
u2− lnu),

hence u(1) =a0 and u≤a0 over [0,1]. Assuming that x1∈ (0,1) is the first point such
that u reaches its minimum and x2∈ (0,1) the last point, then u(x1)≥u, u(x2)≥u and
ux<0, E >0 over (0,x1), ux>0, E <0 over (x2,1). From (5.1) we have

(u2−1)( 1
u +b− 1

v )

u
ux=EEx. (5.17)
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Integrating (5.17) over (0,x1), we have

1

2
E2(0) =

∫ x1

0

(u2−1)( 1
u +b− 1

v )

u
(−ux)dx

≤
∫ x1

0

(u2−1)( 1
u + b̄)

u
(−ux)dx

=

∫ a0

u(x1)

(u2−1)( 1
u + b̄)

u
du

≤
∫ a0

1

(u2−1)( 1
u + b̄)

u
du.

Similarly, integrating (5.17) over (x2,1), we get

1

2
E2(1) =

∫ 1

x2

(u2−1)( 1
u +b− 1

v )

u
uxdx

≤
∫ 1

x2

(u2−1)( 1
u + b̄)

u
uxdx

=

∫ a0

u(x2)

(u2−1)( 1
u + b̄)

u
du

≤
∫ a0

1

(u2−1)( 1
u + b̄)

u
du.

If a0−1�1, then we have by (5.1) that

E(0)+
(
−E(1)

)
=

∫ 1

0

bdx−
∫ 1

0

1

v
− 1

u
dx≥

∫ 1

0

bdx−(1− 1

a0
)≥ 1

2

∫ 1

0

bdx>0.

Using the analysis similar to the previous sections, we could finish the proof.
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