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ANALYSES FOR A MATHEMATICAL MODEL OF THE
PATTERN FORMATION ON SHELLS OF MOLLUSCS

MEI MING* AND XI1AO YINGKUN**

Abstract. This paper analyses a mathematical model of the pattern formation on the
shell of molluscs which is actually a kind of reaction—diffusion system., The exdstence
and uniqueness of a global smooth solution of this system with Cauchy problem and its
stability and time decay rate are studied by means of an elementary energy method.

1. Introduction

How to understand the pattern formation of a shell of molluscs is an interesting
problem for bio~mathematicians. In the nature, some molluscs are quite different in
the sense of their sorts, but their pattern formations are so similar. This shows us
that they have the same reaction function. In 1969, C. H. Wadington and J. Cowe[7]
proposed a concept of the tent-like pattern formation. In 1982, D. Lingdsay([2] pro-
posed one called as pattern formation of bivalved molluscs (for example, shell, etc.}.
After that, H. Meinhardt and H. Klingler(5] explained that the pattern formation
of shell of molluscs is a reaction—diffusion process. We believe that this explana-
tion is reasonable due to that, for example, the formation of oblique-line is just
one: a pigment-producing cell can affect its neighbour cell, and that, this neighbour
cell will become a pigment—producing cell and influence its neighbour in turn, then
step by step, an obligue-line of pigment—producing cells will be formed. For this
phenomenon, H. Meinhardt and H. Klingler[5] gave a model as follows:

a?s

— D,Aa = — . R— 1.1
at = et T 1 (1.1)
8 —D,As=—vs+ o0 - o’s (1.2)
t— HaBs =T 1+x02+pg '

Here, a(z,t) the activator density, s(x,t) the substrate demsity, £ € R3, ¢t > 0,
D,; > 0 and D, > 0 are the diffusion coefficients of a{z, t} and s(z, t), respectively. p,
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7, po, #4, 7Y and & are positive constants, 4 and -y denote the decay rates of activator
and substrate, respectively. A is the Laplacian operator in R*. T. Jiang[1] studied
the existence and uniquess of the solution for (1.1), (1.2) with Neumann boundary
condition, and discussed the branch of the solutions.

In this paper, we study the Cauchy problem for system (1.1), (1.2) with the initial
data
t=0: a=ag(z), s=so(z), z€ R (1.3)

Our plan contains the following. After stating the notions, we prove the existence
and uniqueness of global smooth solutions of (1.1)-(1.3) in Sect.2, and show the
stability and time decay rate of the solutions in Sect.3. These results will show us
that, in this autocatalytic molecular reaction process, the densities of activator and
substrate stably extend to a steady station in exponential decay, and there is no
pattern to form after the end of this process for a long time.

Notations We denote the norm and the product of L2(R%) by || - || and (,), the
norms of H*(#%) and C*(R?) by || - ||x and | - ||cx, respectively. Let

D¥ = 8% /azk1 0zk 828 k= ky + kz + ks

For any fixed positive constants Ny, M;, i = 1, 2, we define a functional set(0< N <
Ny, T > 0) as the following

Q0,T | N, M2, MZ)
={(u,v) € R?*|(u,v) € (C*(0,T; H*) n C*(0, T; H*) n L%(0, T; H%))?,
sup ([l + |lv(@®)3) < N2
0<t<T

sup (|lue(OZ + llve(@®)]13) < M?
0<t<T

T 2 2
sup f (a2 + o)t < M2},
o<t<T Jo

which will be used later. We can well understand that £2(0,7 | N, M?, M2) is a closed
convex set in the Banach space {C'(0,T; H?) N C°(0, T; H*) N L?(0, T; H5))2.
By the Sobolev’s inequality, there exists N; > 0 such that for any T > 0 the
inequality
sup (|lu(If + [lv@®)]|]) < N?
0<t<T

impilies that
sup_([|lu(®)[[Ze + [le()][3) < 12
0<t<T

Therefore we choose i, = R,(r) as such constant satisfying above.



http://www.cqvip.com

£ OO0 http://www.cqvip.com|

MODEL OF SHELL FORMATION OF MOLLUSCS 413

2. Global Existence and Uniqueness

Letting
u(z,t) = alz,t), v(z,t)=s(z,t) —ay '},

then (1.1)—(1.3) can be reduced to

e — DAy = —pu + f(uva (2'1)
v — DyAv = —yv — f(u,v), ' (2.2)
t=0: u=aglz), v=s(z)—0ov"', =zeR (2.3)

where f(u,v) = v2(v + oy~ 1}/(1 + ku? + po).
The differential inequalities as the following lemmas can be found in [3,6]. see also

[4].
Lemma 2.1[3,6] Suppose that f € C*(R?) aad (u,v) € Q0,T | N,M%?, M%), then
| DP{f (w, v)w(z, £} — flu, v)DPwlz. )|
< Cllle@®lls + le@®ll)w(t)lls, 0<p<4 (2.4)

holds for t € [0,T) and w(z,t) € C*0,T; H*), where C > 0 only depends on Nj.
Lemma 2.2[3,6] Suppose that h(u,v) € C°(R?), h(0,0) = 0 aad (v, v)€Q(0, T | N,
M3?, M2), then

I1P?h(x, )l < C(llu(®)lls + [lv(t)la), 0<p<4 (2.5)
holds for t € [0,T], where C > 0 only depends on Nji.

By a standard energy method, we can prove that there exists the unique local
solution of (2.1)—(2.3) in Q{0,¢q | N, M2, M}) for some t3 > 0. For the details, we
may refere to [4]. Thus, our local existence is stated as follows without proof.

Proposition 2.3. (Local Existence) Suppose that ag(z), sp{z) — oy~ ! € HY(R?)
iand satisly
lacll + llso(x) — oy '3 < N§,  (No < N/2). (2.6)
Then there exists to = tg{Np) > 0 such that there is a unique pair of solutions for
(2.1)H2.3) satisfying
(u,v) € Q(0,tg | 2Ny, C'NE,C"NE),
where C', C" > 0 are constants independent of Ny.

Ar we know, to show the global existence, the a priori estimate plays an impor-
tant role in the procedure by the energy method. Our basic energy estimate is the
following.
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Proposition 2.4. (A Priori Estimate) Under the assumptions in Proposition 2.3.
Suppose that (u,v) € 0, T[2N,C' N2, C*N)(T > 0, N < N, /2) is the solution of
(2-1)(2.3). Then there exists a sufficiently small Ng > 0, such that

laollZ + llso(x) — ov ™! I3 < NE,  (No < N/2), (2.7)

when N < N, then

lw®)lIZ + He(@®)IIF < N§ (2.8)
holds for t € [0, 7).
Proof. We first denote that

aTu u?

U—
v(1 + xu? + pg) (1 + xu? + py)

Ly (e, v;U, V)= U, — D,AU + uU — V., (2.9}

ou u?

La(u, s U, V) =V, —D,AV—+—7V—+—7(1+Ru2+pﬂ)U+ (1+ xu? + po)

V, (2.10)
and ¢, = Jou, v, = J,vf where J,u = ¢~3 fR.a FETE yu(y, t)dy.

Differentiating L:(u, v; v.,v) ( = 1,2) as D* (0 < & < 4), making their products
with D*u, and D¥wv,, respectively, adding them and integrating the result yield

t
I —zf ((DkuE,DkLl(u,v;us,m)) + (DkUE,DkLz(U,‘U;uE,Ug)))dT
0

= 5UD*u )1 + D 0 (A ~ | DFuc (0)] — [ID*u(O)])

+ /:(L’a||1-7”‘+1u.s(“r)||2 + D, || D*F 1o, (7)I2)dr '
+ /c.,“(ullB"‘u..r(*r)||2 + 1 D (7)||2)ar .. -
+ /:(—Dkﬂe + D*ve, D*g(v, v; u,, v))dr, (2.11)
where
ou u?

gu, v; e, ve) = (2.12)

U + — .
Y1 +wu?+p9) © (1+wku2+p0) ©

From Lemmas 2.1 and 2.2 we obtain

1D*g(u, 03 05e, ve)|| < CLR(|lwe (D] + [|ve(£)]12)- (2.13)
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Moreover, by Schwarz’s inequality and Cauchy's inequality (eb < 24 + -5, for any
71 > 0), using (2.13), we have

1
L 25 (1D ue ()1 + |1 D" v (0)]|” — | D*uc(0) | — || D* 0 (0))I7)
i
* ./ (Dall D* ue (1) + D, | D** o (7)) dr
0

+«f = D NP e + (5 = DD ()Pl

C

R [ 2 2
; ]{;(Ilus(’f)ll4+llve('r)ll4)df- (2.14)

Choosing 1 < min{24, 2y} and summing (2.14) with %k yield

4

d i zéillue(t)llﬁ + v ()13 — lu(0)1Z — [l (0)]I3)
k=0

+ f (Dalluelr)IIE + Dyllva(r)[12)dr
1]

+ [ = Dllcol + 0 = DilwelEar

8 R
1

j; (Nue(m)NZ + loe(r)ND)dr. (2.15)

In particular, selecting Ny < mi.n{i';;"o":j—_;’l, ﬂl%lc;;—’l, r—g’-}, when N < Ny, we get

4

1
Z Iy 25(”‘% O3 + llve ()3 — llu(0))|2 — llv(0)]|3)
k=0
¢ 2 2
8 [ Quctl + fouDiDr, (216)
where § = min{u — % — %CINO,W -2- %CINO}.
Letting ¢ — 0, we know that the following uniformly holds for ¢ € [0, T

e ()2 — llw(t)lla,  Nlwel)lla — [loft)lls (2.17)

Notice that (u,v) is the smooth solution of {2.1)-(2.3), namely, Li(u,viuv,v) =
Lo{u,v;u,v) =0, then we have

I = /:((D"uE,D" (Ly(u, 5., o) — JoLa(u,v;u, v)))

+ (Dk'”c: Dk(L2(u1 U3 Uy vs) - J£L2(u’av; e, 'U))))dT
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Due to the properties of J. (see [6]) we have

I D*(Li(ee, w3 te, ve) — JeLi(u,viu,2))| =0, i=1,2, 0<k<3
‘
‘ [ ((DkusaDk(Ll (u1 Keh us»"-’e) - JELl(uu mu, U)))dT‘
o
t 3 t 1
5([ ”Dsug(f)uzdfr) ( |D3(Ly (u, v 1, ve) — JeLy(u,v;u, v})”zdr) — D,
0 0
:
|[ ({Dk‘UE,Dk{Lz(H,U: Ue, 'UE) - JELE(T'M 'U;’U.,U)))d.?“
0

¢ 1 t 1
5(]0 ||D5'u€{‘r)||2d*r)2 (/; [D3(La (e, v; 2, ve) — JeLo(u, v; u,‘u))"zd‘r)2 — 0,

as ¢ — 0. Therefore, we obtain I — 0 as € — 0. Above results imply that (let
e —0)

NIl + o2 + 29£(Hu(‘r)ll§ + llo(r M)

< 11e(0) 1% + [l(O)I. (2.18)
Thus (2.7) and (2.18) yield (2.8). The proof is completed. D

Up to now, we can prove the global existence by a priori estimnatle together with
the local existence.

Theorem 2.5. (Global Existence) Suppose that ag(x), so{z) — oy~ ! € HY(R3).
Then there exists a suitably small positive constant Ny, such that, when

llaollz + llso() — oyt < NG, (2.19)

then there exdsts a unique pair of global solutions for (2.1)—(2.3) (1, v) € (0, 0o | 2Ny,
C'NE,C" NZ) satisfying

lu(@)2 + lle(®)l2 < N§, for ¢€[0,00]. (2.20)

Proof. Let Ny be the selected positive constant in Proposition 2.4. According to the
local existence result {Proposition 2.3), there is a 5 > 0 such that the problem {2.1)-
{2.3) has a unique local smooth solution in R? x [0, ¢y]. Due to the a priori estimates
(Proposition 2.4), we know the local solution satisfies (2.20) for t € [0,¢y]. Now
we consider the system (2.1), (2.2) with the “initial data” (u(x,to),v(z,%p)). Since
this “initial data™ satisfies (2.20), applying Proposition 2.3 again, we can extend the
solvable interval of the solution (u{z,t},v{x,t)) to R x [0,2#;], and can also show
the estimate (2.20) for ¢ € [0, 25| by Proposition 2.4.  Repeating this procedure, we
prove that (u,v) is the global smooth solution and satisfies (2.20) for ¢ € [0, 00). The
proof is completed.
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3. Global Stability and Asymptotic Decay

Before stating our stability theorem, we give a basic estimate on the global smooth
solution as follows.

Lemma 3.1. Under the assumptions in Theorem 2.5,

t
(I3 + [l + 29/; el )IE + [lota)IZ)dr

o

< [lacll + llso — ;llﬁ (3.1)
holds for t € [0, 00).
Proof. Firstly, we consider (2.1), (2.2) with this initial data

(.m0 = (Jeao, Je(s0 — %))(m),

and denote the solution as (u.(z, £), v-(z,t)). By the same procedure in Proposition
2.4, we can obtain a similar estimate corresponding (2.18) as

t
||u£(t)||i + "’Us(t)”i + 29/0 (||ue('f)||i + "Ue(f)lli)df

< lue (0 + [l (0)]I3, £ € [0, 00). (3.2)

Considering now (u, v)|t=0 = (@, 90 — %) € H*(R?), remarking the relative solution
a8 (u,v), since C5°(R?) is dense in H*(R?), and using Banach—Saks theorem, we
have

(e, ve) = (u,v) in H*RY), as £—0.

Taking the limit, we obtain (3.1). o

Theorem 3.2. (Global Stability) Under the assumptions in Theorem 2.5, the so-
lution of (2.1)—{(2.3) is globally stable, i.e., when

a
llaollZ + [0 — ;lli <e, (3.3)
where £ > 0 is any constant, then
()2 + [[w(8)[| L~ < Ce (3.4)

holds for t € [0, 00).

Proof. The assertion can be verified by Lemma 3.1 and Sobolev’s inequality. o
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Theorem 3.3. (Asymptiotic Decay Rate) Under the assumptions in Theorem 2.5,
the asymptotic decay rate of the solution for {2.1)(2.3)

[@®llze + o)z < CNoe™® (3.5)

holds for t € [0, 00). 4

Proof. Due to (3.1) in Lemma 3.1 and Gronwall’s inequality, we have

lu@)lg + lo(®))I < NFe28. (3.6)

Applying Sobolev’s inequality to (3.6) yields our desired estimate {3.5). o

(1]
(2]

(4]
5]

(6]
(7]

References

Jiang, T., Nonconstant equilibrium solutions for a model of pattern formation on shells of
mulluscs, J. Xinjiang Univ., (Natural Sci. Ed.), 7 (1990), 1-5. (Chinese)

Lindssy, D., A model for pattern formation of bivalved molluscs, Differentsial'nye Urovneniya,
2 (1982), 32—40. (Russia)

Matsumura, A., Global existence and asymptotics of the solutions of the second—order quasiiin-
ear hyperbolic equation with the first—order dissipation, Publ. RIMS, Kyoto Univ., 13 (1977),
349-379.

Mei, M., Global smooth solutions of the Cauchy problem for generalized equations of pulse
transmission type with high dimension, Acta Appl. Math. Sinica, 14 (1991}, 450—481. (Chinese)

Meinhardt, H. and Klingler, M., A model for pattern formation on the shells of molluscs, J.
Theory Biol., 126 (1987}, 63-89.

Minzahata, S., Theory of Partial Differential Equations, Cambridge Univ. Prin., 1973.

Wadington, C.H. and Cowe. J., Tent—like pattern formation on the shells of molluses, J. Theory
Biol., 25 (1969), 219-231.

Department of Mathematics, Faculty of Science, Kanazawa University, Kanazawa 920-11, Japan.
E-mail address: mei@lappa.s.kanazawa-u.ac.jp

Department of Mathematics, Jiangxi Normal University, Nanchang 330027.



http://www.cqvip.com

