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Abstract

The existence of stationary subsonic solutions and their stability for 3-D hydrodynamic model of unipolar 
semiconductors with the Ohmic contact boundary have been open for long time due to some technical 
reason, as we know. In this paper, we consider 3-D radial solutions to the system in a hollow ball, and prove 
that the 3-D radial subsonic stationary solutions uniquely exist and are asymptotically stable, when the 
initial perturbations around the subsonic steady-state are small enough. Different from the existing studies 
on the radial solutions for fluid dynamics where the inner boundary of the hollow ball must be far away 
from the singular origin, here we may allow the chosen inner boundary arbitrarily close to the singular origin 
and reveal the relationship between the inner boundary and the large time behavior of the radial solution. 
This partially answers the open question of the stability of stationary waves subjected to the Ohmic contact 
boundary conditions in the multiple dimensional space. We also prove the existence of non-flat stationary 
subsonic solution, which essentially improve and develop the previous studies in this subject. The proof is 
based on the technical energy estimates in certain weighted Sobolev spaces, where the weight functions are 
artfully selected to be the distance of the targeted spatial location and the singular point.
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1. Introduction

Proposed first by Blötekjær [4], the dynamic motion of the charged fluid particles such as 
electrons in semiconductor devices and the charged ions in plasma is modeled as the so-called 
hydrodynamic system [19,25], which is represented mathematically by Euler-Poisson equations:

⎧⎪⎪⎨
⎪⎪⎩

ρt + � · (ρ �u) = 0,

(ρ �u)t + � · (ρ �u ⊗ �u) + �[P(ρ)] − ρ � � = −ρ �u
τ

,

�� = ρ − D(�x).

(1.1)

Here, �x = (x1, x2, x3) ∈ R3, ρ = ρ(�x, t) > 0 is the electronic density, �u = (u1, u2, u3)(�x, t) is 
the electronic velocity at location �x and time t , �(�x, t) is the electrostatic potential, τ > 0 is the 
relaxation time (without loss of generality we assume τ = 1 throughout of the paper), and P(ρ)

is the pressure function satisfying

P ∈ C3(0,+∞), with s2P ′(s) > 0 strictly increasing for s > 0. (1.2)

D(�x) > 0 is the doping profile standing for the density of impurities in semiconductor devices.
The main interest of the paper is to investigate the existence and uniqueness of the solutions 

to 3-D hydrodynamic system (1.1) as well as their convergence to the corresponding steady-state 
subsonic solutions, subjected to the following initial-boundary-value problem

(ρ, �u)|t=0 = (ρ0, �u0)(�x), �x ∈ �, (1.3)

ρ|∂� = ρ1(�x, t) > 0, �x ∈ ∂�, t > 0, (1.4)

�|∂� = �1(�x, t), �x ∈ ∂�, t > 0, (1.5)

where, � ⊂ R3 is a bounded domain with smooth boundary ∂�, and the boundary condition 
(1.4) is physically called the Ohmic contact boundary, which is in a general form. Here ρ0(�x) =
ρ1(�x, 0) for �x ∈ ∂� is the compatibility condition.

In 1-D case, when the boundary is completely subsonic, Degond and Markowich [5] first 
proved the existence of subsonic steady-state solution. The uniqueness of solution was obtained 
with a very strong subsonic background, namely, |u| 
 1. See also the significant development 
on subsonic steady-state solutions contributed in [6,8,18]. When the boundary is sonic/super-
sonic, or the doping profile is non-subsonic, the corresponding steady-state equations may pos-
sess supersonic/shock-transonic/C1-transonic stationary solutions [1,2,9,21–24,27,28]. Particu-
larly, regarding the time-dependent hydrodynamic system with subsonic background (subsonic 
contact boundary, subsonic initial data and subsonic doping profile), Li-Markowich-Mei [20]
first showed that the 1-D Euler-Poisson system (1.1) possesses a unique subsonic solution which 
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time-asymptotically converges to the corresponding subsonic steady-state solution. The conver-
gence results in the case of non-flat doping profile were then improved by Nishibata-Suzuki [26]
and Guo-Strauss [12]. For the Cauchy problems, the convergence of time-dependent subsonic 
solutions to the corresponding subsonic stationary waves or diffusion-waves in the switch-on 
case were intensively studied in [7,13–15].

In n-D case, the relevant studies are quite limited as we know. Guo-Strauss [12] first con-
sidered the 3-D case with the insulation boundary condition, where the steady-state can be 
constructed by the standard monotone elliptic equations, and further proved the stability of 
steady-state of semiconductor, but the 3-D case with the Ohmic contact boundary conditions 
was open, because the existence of corresponding 3-D stationary solutions in a general bounded 
domain is still unknown, of course, it is nothing to talk about their stability. While, in the full 
space Rn, Huang-Mei-Wang-Yu [16] studied the n-D Cauchy problem, and showed the time-
exponentially convergence of n-D subsonic solutions to the planar stationary wave, which are 
the solutions to the corresponding 1-D porous media equations. See also the n-D case for Euler-
Poisson system in [3,10,13].

Since the 3-D case with the physical contact boundary conditions in the general bounded do-
main � ⊂ R3 is open, naturally, the first attempt for us is to consider a special domain like a 
hollow ball, namely we look for the radial solutions for 3-D hydrodynamic system of semicon-
ductors (1.1).

Let us denote

r = |�x| =
√

x2
1 + x2

2 + x2
3 ,

ρ(�x, t) = ρ(r, t),

�u(�x, t) = (u1, u2, u3)(�x, t) =
(u(r, t)x1

r
,
u(r, t)x2

r
,
u(r, t)x3

r

)
,

�(�x, t) = �(r, t),

D(�x) = D(r),

j (r, t) : = ρ(r, t)u(r, t), the current density of electrons,

then the system (1.1) is reduced to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρt + jr + 2j

r
= 0, (a)

jt +
(j2

ρ
+ P(ρ)

)
r
+ 2j2

ρr
− ρ�r + j = 0, (b)

�rr + 2�r

r
= ρ − D(r). (c)

(1.6)

From the above system, it is clear that r = 0 is the singular point, so the targeted domain should 
be a hollow ball � = [ε0, 1] for ε0 > 0, and the subjected initial value and the contact boundary 
conditions are

(ρ, j)|t=0 = (ρ0, j0)(r), r ∈ [ε0,1], (1.7)

ρ(t, ε0) = ρL > 0, ρ(t,1) = ρR > 0, (1.8)

�(t, ε0) = 0, �(t,1) = �R > 0. (1.9)
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Here ρL, ρR and �R are positive constants. In addition, we assume that the compatibility condi-
tions hold:

ρ0(ε0) = ρL, ρ0(1) = ρR,
(
j0r + 2j0

ε0

)
(ε0) = (j0r + 2j0)(1) = 0. (1.10)

In what follows, we concentrate ourselves to the IBVP (1.6)-(1.9), and prove the global exis-
tence and uniqueness of the above radial solutions (ρ, j, �)(t, r), as well as the time-exponential 
convergence to the corresponding stationary subsonic solutions (ρ̃, j̃ , �̃)(r) given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j̃r + 2j̃

r
= 0, namely, j̃ = const.

r2 ,( j̃2

ρ̃
+ P(ρ̃)

)
r
+ 2j̃2

ρ̃r
− ρ̃�̃r + j̃ = 0,

�̃rr + 2�̃r

r
= ρ̃ − D(r),

(1.11)

with the contact boundary conditions{
ρ̃(ε0) = ρL, ρ̃(1) = ρR,

�̃(ε0) = 0, �̃(1) = �R.
(1.12)

Here are some technical features of the paper. Different from the existing studies on the radial 
solutions for fluid dynamics where the inner boundary r = ε0 for the hollow ball is needed to 
be far from the singular point r = 0, in this paper we may allow the chosen inner boundary 
r = ε0 arbitrarily close to such a singular origin r = 0 and reveal the relationship between the 
inner boundary and the large time behavior of the radial solution. This is the first technical point 
in our paper. The second technical point is that, in order to treat such a singularity when ε0 is 
sufficiently close to 0, artfully the working solution space will be designed as a weighted Sobolev 
space with the weight functions as the proportion of distance between the targeted location and 
the singular origin, namely, the weight functions are r , ε0r and ε2

0r . The third point is that we 
may allow the doping profile D(r) to be non-flat, namely, |D′(r)| /
1, while, such a smallness 
was often requested in the previous studies. With this help, we show another new result that 
the steady-state solutions can be non-flat, namely, the derivatives of steady-state solutions can 
be large. This is also different from the existing studies with |∂r ρ̃|
1. The last but a crucial 
technique is the artful selection for the weight function h̃(r) in the first order energy estimates 
of the a priori estimates in section 3. This idea is inspired by [12] but developed with some 
significance because of the singularity.

By the terminology from gas dynamics, we call c := √
P ′(ρ) the sound speed. So, the hydro-

dynamic system (1.6) is said to be subsonic, if

fluid velocity: u = j

ρ
<

√
P ′(ρ) : sound speed.

We are going to look for the global solution to (1.6)-(1.9) satisfying, for t > 0,

inf
(
P ′(ρ) − j2

2

)
> c1 > 0, (1.13)
ρ
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infρ > 0 (1.14)

for some positive constant c1. Throughout the paper, we assume that the initial data and the 
boundary values satisfy the subsonic conditions (1.13) and (1.14).

Notations. In this paper, we denote the generic positive constants by C, independent of ε0. 
We also denote the norm of L2(�) by ‖f ‖, and the norm of Hk by ‖f ‖k , where, without confu-
sion, the derivatives are simply denoted by ∂rf = fr and ∂2

r f = frr . A weighted Sobolev space 
Hk

r (�) with the weight function w(r) = r , is defined by f ∈ Hk
r (�), where r∂l

rf ∈ L2(�) for 
l = 0, 1, · · · , k, with the norm

‖f ‖Hk
r (�) =

( k∑
l=0

∫
�

|r · ∂l
rf |2dr

) 1
2
.

For given T > 0, the solution spaces without/with the weight function are defined by

(non-weighted space): χk([0, T ];�) = {f | ∂k−l
t ∂l

rf ∈ L2(�),‖∂k−l
t f (t)‖Hl(�) ∈ C0[0, T ],

for 0 ≤ l ≤ k}
equipped with the norm

‖f ‖χk([0,T ];�) = max
0≤t≤T

k∑
l=0

‖∂k−l
t f (t)‖Hl(�),

and

(weighted space): χk,r ([0, T ];�) = {f | ∂k−l
t ∂l

rf ∈ L2
r (�),‖∂k−l

t f (t)‖Hl
r (�) ∈ C0[0, T ],

for 0 ≤ l ≤ k}
equipped with norms

‖f ‖χk,r ([0,T ];�) = max
0≤t≤T

k∑
l=0

‖∂k−l
t f (t)‖Hl

r (�).

Generally, we denote the norm of C0(�) by |f |0.

For convenience, we introduce the vector-valued function �s(r) =
(

s1(r)

s2(r)

)
. Here �s(r) ∈

Hk(�) is defined by s1(r) ∈ Hk(�) and s2(r) ∈ Hk(�) with the norm

‖�s‖Hk(�) := ‖s1‖Hk(�) + ‖s2‖Hk(�).

In the same way, we define �s(r) ∈ Hk
r (�) with the norm

‖�s‖Hk
r (�) := ‖s1‖Hk

r (�) + ‖s2‖Hk
r (�).

Now we are going to state our main results.
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Theorem 1.1 (Existence of 3-D radial steady-state). Let 0 < ε0 
 1 be arbitrarily given, and 
define A(r) := ρL + ρR−ρL

1−ε0
(r − ε0). Assume that |ρL − ρR| + |�R| ≤ Cεα

0 with α > 2, and that 
D(r) satisfies 0 < c̃ ≤ D(r) and max

r∈[ε0,1]{r|A(r) − D(r)|} ≤ C1ε0 with some positive constants c̃

and C1. Then the stationary system (1.11)-(1.12) has a unique solution (ρ̃, j̃ , �̃)(r) ∈ [H 2(�)]3, 
satisfying that, for some positive constants C̄0, C2, C3 and c′

1,

|j̃ | ≤ C̄0ε
α−1
0 � J0, C− ≤ ρ̃ ≤ C+, ‖ρ̃ − A‖1 ≤ C2, ‖rρ̃rr‖ ≤ C3, (1.15)

and

inf
(
P ′(ρ̃) − j̃2

ρ̃2

)
> c′

1 > 0, (1.16)

where

C− = min{ρL,ρR,
c−
2

}, C+ = max{ρL,ρR,
c−
2

+ c+},
c− = min

r∈[ε0,1]D(r) > 0, c+ = max
r∈[ε0,1]D(r). (1.17)

Theorem 1.2 (Stability of steady-state). Suppose that the assumptions of Theorem 1.1 hold. Let 
(ρ̃, j̃ , φ̃)(r) be the solution to the steady state system of (1.11)-(1.12) obtained in Theorem 1.1. 
Assume that the initial perturbations around the steady-state in the weighted space are small:

∥∥∥(
ρ0 − ρ̃

j0 − j̃

)∥∥∥
L2

r

+ ε0

∥∥∥∂r

(
ρ0 − ρ̃

j0 − j̃

)∥∥∥
L2

r

+ ε2
0

∥∥∥∂2
r

(
ρ0 − ρ̃

j0 − j̃

)∥∥∥
L2

r

+ ‖�r(0) − �̃r‖L2
r
≤ C4ε

γ

0

(1.18)
for any γ ≥ 5

2 and some positive constant C4, where

�r(0) − �̃r = r−2
[ r∫

ε0

s2(ρ0 − ρ̃)(s)ds − ε0

1 − ε0

1∫
ε0

r−2
( r∫

ε0

s2(ρ0 − ρ̃)(s)ds
)
dr

]
.

(1.19)

Then the Euler-Poisson system (1.6)-(1.9) has a unique solution (ρ, j, �)(t, r) ∈ [χ2,r ([0, ∞);
�)]3 satisfying the condition (1.13)-(1.14). Moreover, it holds that

∑
0≤l≤2

εl
0

∥∥∥∂l

(
ρ − ρ̃

j − j̃

)
(t)

∥∥∥
L2

r

+ ‖∂r(� − �̃)(t)‖L2
r
≤ Cε

γ

0 e− c′t
2 , ∀t ∈ [0,+∞), (1.20)

for some positive constant C, independent of ε0, where we denote a derivative in both r and t of 
order l by ∂l .

Remark 1.1. 1. In Theorems 1.1 and 1.2, we allow the stationary solution to be non-flat, namely, 
|∂r ρ̃| /
1. This is totally different from the existing studies in [5,7,8,12,15,16,20,26].

2. The constants Ci are independent of ε0, where ε0 can be arbitrarily taken close to 0. This 
is different from that of coefficients depending on ε0 in [17], where ε0 is the inner boundary of 
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� = [ε0, 1]. Thus, we partially answer the open question in [12] on the existence and stability 
of subsonic solutions for 3-D hydrodynamic system of semiconductor with the Ohmic contact 
boundary conditions in a bounded domain specified as a hollow ball by Theorems 1.1 and 1.2.

3. When ε0 → 0+, Theorem 1.1 still guarantees the existence of the non-trivial stationary 
solutions with j̃ = 0, ρ̃ �= constant, and �̃ �= constant. However, Theorem 1.2 does not work out 
the stability of the stationary waves, and leaves the question still open.

4. For the case of ε0 ≥ C0, the similar results can be derived directly from Theorem 1.1 and 
1.2 or by the same way shown in [12].

The paper is organized as follows. In section 2, we will show, by the linearized iteration 
scheme and the weighted energy method, the existence and uniqueness of steady solution to 
(1.6)-(1.9). Then, in section 3, by the weighted energy method and technical “energy” selection 
we will establish the a priori energy estimate of the solutions (σ, η, φ)(t, r) to (3.2)-(3.3). The 
a priori estimates, together with the local existence and continuity arguments, yield the global 
existence and uniqueness of (3.2)-(3.3), as well as the time-exponential convergence to the cor-
responding stationary subsonic solutions (ρ̃, j̃ , �̃)(r).

2. The steady solution

In this section, we consider the BVP of steady system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j̃r + 2j̃

r
= 0, (a)( j̃2

ρ̃
+ P(ρ̃)

)
r
+ 2j̃2

ρ̃r
− ρ̃�̃r + j̃ = 0, (b)

�̃rr + 2�̃r

r
= ρ̃ − D(r), (c)

(2.1)

with the contact boundary conditions{
ρ̃(ε0) = ρL, ρ̃(1) = ρR, (a)

�̃(ε0) = 0, �̃(1) = �R. (b)
(2.2)

And we will show the existence and uniqueness of solution (ρ̃, j̃ , �̃)(r) to (2.1)-(2.2) under the 
subsonic condition

inf
r∈[ε0,1] ρ̃ > C− > 0, inf

r∈[ε0,1]

(
P ′(ρ̃) − j̃2

ρ̃2

)
> c′

1 > 0. (2.3)

Moreover, we may reduce (2.1)(b) to

F(ρ̃, j̃ )r − �̃r + j̃

ρ̃
= 0, (2.4)

where F(ρ̃, j̃ ) = h(ρ̃) + j̃2

2ρ̃2 and h(ρ̃) is defined by h′(s) = P ′(s)
s

.

Our proof starts with the observation that j̃ and �̃ have explicit expression on ρ̃ in Lemma 2.1.
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Lemma 2.1. Suppose that 0 < ε0 
 1 and |ρL − ρR| + |�R| < Cεα
0 with α > 2. For any steady-

state solution (ρ̃, j̃ , �̃)(r) of (2.1)-(2.2) satisfying

C− ≤ ρ̃ ≤ C+ and j̃ ≤ J0 := C̄0ε
α−1
0 , (2.5)

there holds that

j̃ (r) = M0[ρ̃]r−2 =: J̃ [ρ̃](r),

�̃(r) =
r∫

ε0

s−2
[ s∫

ε0

τ 2(ρ̃(τ ) − D(τ))dτ + ε0

1 − ε0
(�R − A[ρ̃])

]
ds =: �̃[ρ̃](r), (2.6)

where

A := 1

2ρ2
R

− 1

2ρ2
Lε4

0

, B[ρ̃] :=
1∫

ε0

1

ρ̃(r)r2 dr, C := h(ρR) − h(ρL) − �R, (2.7)

M0[ρ̃] := −2C

B[ρ̃] + √
(B[ρ̃])2 − 4AC

= const., (2.8)

and

A[ρ̃] :=
1∫

ε0

r−2
( r∫

ε0

s2(ρ̃(s) − D(s))ds
)
dr. (2.9)

Proof. Multiplying (2.1)(c) by r2 and integrating it over [ε0, r], we get

�̃r (r) = r−2
[
ε2

0�̃r (ε0) +
r∫

ε0

s2(ρ̃(s) − D(s))ds
]
. (2.10)

To specify the value of �̃r(ε0), we integrate (2.10) over [ε0, 1], with the help of (2.2)(b), to get

�R = ε0(1 − ε0)�̃r (ε0) +
1∫

ε0

r−2
( r∫

ε0

s2(ρ̃(s) − D(s))ds
)
dr,

namely,

�̃r (ε0) = 1

ε0(1 − ε0)

(
�R − A[ρ̃]

)
, (2.11)

where A[ρ̃] is defined as in (2.9). Then, substituting (2.11) into (2.10) and integrating it over 
[ε0, r] again gives (2.6).
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Note that j̃ (r) = r−2M0[ρ̃] holds from (2.1)(a), where M0[ρ̃] is a constant. To specify the 
value of M0[ρ̃], we integrate (2.4) over [ε0, 1] to have

F(ρR,M0[ρ̃]) − F(ρL,M0[ρ̃]ε−2
0 ) − �R +

1∫
ε0

j̃

ρ̃
dr = 0, (2.12)

that is,

A(M0[ρ̃])2 +B[ρ̃]M0[ρ̃] +C = 0, (2.13)

where A, B[ρ̃], C, M0[ρ̃] are given in (2.7) and (2.8).
Under the conditions that 0 < ε0 
 1 and |ρL − ρR| + |�R| < Cεα

0 with α > 2, we claim that

ĉ1ε
−4
0 ≤ |A| ≤ Ĉ1ε

−4
0 , ĉ2ε

−1
0 ≤ B[ρ̃] ≤ Ĉ2ε

−1
0 , and |C| ≤ Ĉ3ε

α
0 (2.14)

for some positive constants ĉi(i = 1, 2) and Ĉj (j = 1, 2, 3) with ĉi ≤ Ĉi .
Indeed, there exists a positive constant δ̃1 such that if 0 < ε0 < δ̃1, then it holds that

|A| = 1

2ρ2
Lε4

0

− 1

2ρ2
R

<
1

2ρ2
Lε4

0

,

and

|A| = 1

2ρ2
Lε4

0

− 1

2ρ2
R

= 1

4ρ2
Lε4

0

+ 1

4ρ2
Lε4

0

− 1

2ρ2
R

>
1

4ρ2
Lε4

0

.

On the other hand, with C− ≤ ρ̃ ≤ C+, we have

1 − ε0

C+ε0
= 1

C+

1∫
ε0

1

r2 dr ≤ B[ρ̃] =
1∫

ε0

1

ρ̃(r)r2 dr ≤ 1

C−

1∫
ε0

1

r2 dr = 1 − ε0

C−ε0
. (2.15)

In addition,

|C| = |h(ρR) − h(ρL) − �R| ≤ |h′(θ)(ρR − ρL)| + |�R| ≤ Ĉ3ε
α
0 .

Thus, the claim (2.14) holds, which further indicates, in view of the smallness of ε0 and α > 2, 
that

(B[ρ̃])2 − 4AC > (ĉ2)
2ε−2

0 − 4Ĉ1Ĉ3ε
−4+α
0 >

(ĉ2)
2

2
ε−2

0 . (2.16)

Therefore, (2.13) gives the two possible cases as follows,
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(i) M0[ρ̃] = −B[ρ̃] − √
(B[ρ̃])2 − 4AC

2A
,

(ii) M0[ρ̃] = −B[ρ̃] + √
(B[ρ̃])2 − 4AC

2A
.

For case (i), we have

|M0[ρ̃]| = B[ρ̃] + √
(B[ρ̃])2 − 4AC

2|A| ≥ ε4
0

2Ĉ1
(B[ρ̃] +

√
(B[ρ̃])2 − 4AC).

Recall that

B[ρ̃] ≤ B[ρ̃] +
√

(B[ρ̃])2 − 4AC ≤ 2B[ρ̃],
we get

|M0[ρ̃]| ≥ ε4
0

2Ĉ1
B[ρ̃] ≥ ĉ2ε

3
0

2Ĉ1
,

and consider the value of j̃ (r) at the point r = ε0:

|j̃ (ε0)| = |M0[ρ̃]|ε−2
0 ≥ ĉ2ε

3
0

2Ĉ1
ε−2

0 ≥ ĉ2ε0

2Ĉ1
.

This is a contradiction to the condition |j̃ (r)| < C̄0ε
α−1
0 , r ∈ [ε0, 1] with α > 2, for some positive 

constant C̄0 as 0 < ε0 
 1.
For case (ii), i.e.,

M0[ρ̃] = −B[ρ̃] + √
(B[ρ̃])2 − 4AC

2A
= −2C

B[ρ̃] + √
(B[ρ̃])2 − 4AC

,

so we have

|M0[ρ̃]| = 2|C|
B[ρ̃] + √

(B[ρ̃])2 − 4AC
≤ 2|C|

B[ρ̃] ≤ 2Ĉ3

ĉ2
εα+1

0 := C̄0ε
α+1
0 , (2.17)

where C̄0 := 2Ĉ3
ĉ2

. Then,

|j̃ (r)| = |M0[ρ̃]|r−2 ≤ C̄0ε
α−1
0 .

Consequently, the above analysis shows that j̃ can be uniquely expressed by

j̃ (r) = M0[ρ̃]r−2 = −2C

B[ρ̃] + √
(B[ρ̃])2 − 4AC

r−2.

Thus, the proof is complete. �
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Remark 2.1. The condition (2.5) implies that (ρ̃, j̃ , �̃) satisfies the condition (2.3) for some 
positive constant c′

1.

The Lemma 2.1 implies that the existence and uniqueness of solution (ρ̃, j̃ , �̃)(r) of 
(2.1)-(2.2) with the condition (2.5) is equivalent to that of the solution ρ̃(r) with C− ≤ ρ̃ ≤ C+
of the following BVP

⎧⎨
⎩F(ρ̃, J̃ [ρ̃])r − �̃r [ρ̃] + J̃ [ρ̃]

ρ̃
= 0,

ρ̃(ε0) = ρL, ρ̃(1) = ρR.

(2.18)

Thus, our next goal is to achieve the existence and uniqueness of solution to the BVP (2.18) with 
C− ≤ ρ̃ ≤ C+.

To do this, we reduce (2.18) to the BVP of nonlinear elliptic equation as follows:

⎧⎪⎨
⎪⎩

(∂F

∂ρ̃
ρ̃r

)
r
+ 2

r

∂F

∂ρ̃
ρ̃r − ρ̃ = −

( ∂F

∂J̃ [ρ̃] J̃ [ρ̃]r
)

r
− 2

r

∂F

∂J̃ [ρ̃] J̃ [ρ̃]r + J̃ [ρ̃]
ρ̃2 ρ̃r − D,

ρ̃(ε0) = ρL, ρ̃(1) = ρR.

(2.19)

To prove the existence of solution to (2.19), we introduce a subspace for the solution:

AC2,C3 =
{
q ∈ H 2(�)

∣∣∣ ‖q − A‖1 ≤ C2, ‖rqrr‖ ≤ C3, C− ≤ q ≤ C+,

q(ε0) = ρL, q(1) = ρR

}
,

equipped with the norm ‖ · ‖2, where A(r) = ρL + ρR−ρL

1−ε0
(r − ε0), C− and C+ are given in 

Theorem 1.1, C2 and C3 are some constants to be specified. And naturally, we consider the BVP 
of linearized equation as follows:

{(
∂F
∂q

(q, J̃ )ρ̃r

)
r
+ 2

r
∂F
∂q

(q, J̃ )ρ̃r − ρ̃ = −
(

∂F

∂J̃
(q, J̃ )J̃r

)
r
− 2

r
∂F

∂J̃
J̃r + J̃

q2 qr − D, (a)

ρ̃(ε0) = ρL, ρ̃(1) = ρR (b)
(2.20)

for given q ∈ AC2,C3 , where J̃ � J̃ [q] = M0[q]r−2 and M0[q] is given in (2.8). Furthermore, 
J̃ [q] has the following property.

Lemma 2.2. Let 0 < ε0 
 1, and let q, q1, q2 be such that C− ≤ q, q1, q2 ≤ C+, then it holds 
that ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|J̃ [q]|0 ≤ J0,

|J̃ [q1] − J̃ [q2]| ≤ Cε
α− 3

2
0 ‖q1 − q2‖,

‖J̃ [q1] − J̃ [q2]‖ ≤ Cεα−1
0 ‖q1 − q2‖,

r|J̃ [q1] − J̃ [q2]| ≤ Cε
α− 1

2
0 ‖q1 − q2‖ + Cε

α− 3
2

0 ‖rq1 − rq2‖,
‖r(J̃ [q ] − J̃ [q ])‖ ≤ Cεα−1‖rq − rq ‖ + Cεα‖q − q ‖.

(2.21)
1 2 0 1 2 0 1 2
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Proof. Since C− ≤ q ≤ C+, we have 1−ε0
C+ε0

≤ B[q] ≤ 1−ε0
C−ε0

. In the same way as shown in (2.17), 

it is easy to verify that M0[q] ≤ C̄0ε
α+1
0 and |J̃ [q]|0 ≤ J0.

It follows from (2.15) and (2.16) that, for 0 < ε0 
 1,

1

2
B[q] ≤

√
(B[q])2 − 4AC ≤ 2B[q],

which, together with (2.14), leads to

|J̃ [q1] − J̃ [q2]| =
∣∣∣ −2C

B[q1] + √
(B[q1])2 − 4AC

− −2C

B[q2] + √
(B[q2])2 − 4AC

∣∣∣r−2

≤ Cεα
0 (|B[q1] −B[q2]| + |

√
(B[q1])2 − 4AC −

√
(B[q2])2 − 4AC|)

≤ Cεα
0 |B[q1] −B[q2]|

= Cε
α− 3

2
0 ‖q1 − q2‖ (2.22)

and

r|J̃ [q1] − J̃ [q2]| ≤ Cε
α− 1

2
0 ‖q1 − q2‖ + Cε

α− 3
2

0 ‖rq1 − rq2‖.

Furthermore, we have

‖J̃ [q1] − J̃ [q2]‖ ≤ ‖Cεα+2
0 r−2|B[q1] −B[q2]|‖ ≤ Cεα−1

0 ‖q1 − q2‖

and

‖r(J̃ [q1] − J̃ [q2])‖ ≤ ‖Cεα+2
0 r−1|B[q1] −B[q2]|‖ ≤ Cεα−1

0 ‖rq1 − rq2‖ + Cεα
0 ‖q1 − q2‖.

Thus, the proof is complete. �
Remark 2.2. Let 0 < ε0 
 1, for any q with C− ≤ q ≤ C+, then the pair of functions 
(q, J̃ [q])(r) satisfy

∂F (q, J̃ [q])
∂q

≥ inf
r∈�

(
P ′(q) − J̃ [q]2

q2

)
> c′

1

for some positive constant c′
1, independent of q .

We are now in a position to show the existence of solution to (2.20).

Lemma 2.3. Given q ∈ AC2,C3 , there exists a unique solution of (2.20) such that ρ̃ ∈ AC2,C3 for 
0 < ε0 
 1.
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Proof. For q ∈ AC2,C3 , (2.20) is strictly elliptic. Thus, from Theorem 9.15 of [11], there exists a 
unique solution ρ̃ ∈ W 2,2([ε0, 1]) of (2.20). It remains to prove that ρ̃ ∈ AC2,C3 for 0 < ε0 
 1.

Let χ(r) := ρ̃(r) − A(r), where A(r) is given in Theorem 1.1. From the definition of A(r)

and the boundary condition (2.20)(b), we get χ(ε0) = χ(1) = 0. Then, multiplying (2.20)(a) by 
−r2χ and integrating it over [ε0, 1], we have

1∫
ε0

[(∂F

∂q
(q, J̃ )ρ̃r

)
r
+ 2

r

∂F

∂q
(q, J̃ )ρ̃r +

(∂F

∂J̃
(q, J̃ )J̃r

)
r
+ 2

r

∂F

∂J̃
J̃r

]
(−r2χ)dr

+
1∫

ε0

(−ρ̃ + D)(−r2χ)dr −
1∫

ε0

J̃

q2 qr(−r2χ)dr = 0. (2.23)

For the first integral in (2.23), in view of the boundary condition χ(ε0) = χ(1) = 0 and 
Lemma 2.2, by using integration by parts we get

1∫
ε0

[(∂F

∂q
(q, J̃ )ρ̃r

)
r
+ 2

r

∂F

∂q
(q, J̃ )ρ̃r +

(∂F

∂J̃
(q, J̃ )J̃r

)
r
+ 2

r

∂F

∂J̃
J̃r

]
(−r2χ)dr

=
1∫

ε0

(
r2 ∂F

∂q
ρ̃r + r2 ∂F

∂J̃
J̃r

)
χrdr ≥ c′

1

2C+

1∫
ε0

r2χ2
r dr − C|Ar |20 − CJ 4

0 . (2.24)

Here we have used the fact J̃r = −2
r

J̃ and the result

∂F

∂q
= 1

q

(
P ′(q) − J̃ 2

q2

)
≥ c′

1

C+
(2.25)

from F(q, J̃ ) = h(q) + J̃ 2

2q2 , where h′(q) = P ′(q)
q

, and c′
1 is given in Remark 2.2.

Clearly, it holds that

1∫
ε0

(−ρ̃ + D)(−r2χ)dr =
1∫

ε0

r2χ2dr +
1∫

ε0

(A − D)r2χdr ≥ 1

2

1∫
ε0

(rχ)2dr − 1

2
C2

1ε2
0 . (2.26)

On the other hand, with the definition of AC2,C3 and Lemma 2.2, it is easy to see

1∫
ε0

J̃

q2 qr(−r2χ)dr ≤ μ1‖χ‖2
L2

r
+ Cε2α

0

μ1
(C2

2 + |Ar |20) (2.27)

for a suitably small constant μ1 > 0.
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Finally, substituting (2.24)-(2.27) into (2.23), we have

‖χ‖2
L2

r
+ ‖χr‖2

L2
r
≤ C[|Ar |20 + J 4

0 + C2
1ε2

0 + ε2α
0 (C2

2 + |Ar |20)]
≤ Ĉ4(ε

2α
0 (1 + C2)

2 + C2
1ε2

0). (2.28)

Let

C2 := 2
√

Ĉ4C1 (2.29)

and let ε0 be small enough to satisfy

(1 + C2)ε
α−1
0

C1
≤ 1, (2.30)

then we get

‖ρ̃ − A‖1 = ‖χ‖ + ‖χr‖ ≤ 2
√

Ĉ4C1 = C2, (2.31)

where C1 is some positive constant to be determined.
To derive the estimate of rχrr , we multiply (2.20)(a) by r2χrr and take an integration of it 

over [ε0, 1] to get

1∫
ε0

(∂F

∂q
(q, J̃ )ρ̃r

)
r
r2χrrdr +

1∫
ε0

2

r

∂F

∂q
(q, J̃ )ρ̃r r

2χrrdr +
1∫

ε0

(−ρ̃ + D)r2χrrdr

+
1∫

ε0

[(∂F

∂J̃
(q, J̃ )J̃r

)
r
+ 2

r

∂F

∂J̃
J̃r

]
r2χrrdr +

1∫
ε0

J̃

q2 qrr
2χrrdr = 0. (2.32)

From the definition of AC2,C3 and (2.31), it holds that

‖ρ̃r‖ ≤ C2 + ‖Ar‖ ≤ Cεα
0 + C2 (2.33)

and

|rqr |0 ≤ 2(‖rqr‖ + ‖qr‖ + ‖rqrr‖) ≤ 4(Cεα
0 + C2 + C3), (2.34)

which yields, in view of (2.25), that

1∫
ε0

(∂F

∂q
(q, J̃ )ρ̃r

)
r
r2χrrdr

=
1∫

∂F

∂q
r2χ2

rrdr +
1∫ (P ′′(q)

q
− P ′(q)

q2 + 3J̃ 2

q4

)
qr ρ̃r r

2χrrdr +
1∫

4J̃ 2

rq3 ρ̃r r
2χrrdr
ε0 ε0 ε0
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≥ 1

2

1∫
ε0

∂F

∂q
r2χ2

rrdr − C(|rqr |20‖ρ̃r‖2 + J 4
0 ‖ρ̃r‖2)

≥ 1

2

1∫
ε0

∂F

∂q
r2χ2

rrdr − (C(1 + C2 + C3)ε
α
0 + C2

2 + C2C3)
2 − Cε4α−4

0 (1 + C2)
2 (2.35)

and

1∫
ε0

2

r

∂F

∂q
(q, J̃ )ρ̃r r

2χrrdr =
1∫

ε0

2

r

∂F

∂q
(q, J̃ )χrr

2χrrdr +
1∫

ε0

2

r

∂F

∂q
(q, J̃ )Arr

2χrrdr

≤ μ1‖χrr‖2
L2

r
+ C

μ1
(1 + C2)

2, (2.36)

where μ1 is given in (2.27).
For the third integral in (2.32), the constrains on D(r)

max
r∈[ε0,1]{r|A(r) − D(r)|} ≤ C1ε0

given in Theorem 1.1 yields that

1∫
ε0

(−ρ̃ + D)r2χrrdr =
1∫

ε0

(−ρ̃ + A)r2χrrdr −
1∫

ε0

(A − D)r2χrrdr

≤ μ1‖χrr‖2
L2

r
+ C

μ1
‖χ‖2

L2
r
+ C

μ1
|r(A(r) − D(r)|20

≤ μ1‖χrr‖2
L2

r
+ C

μ1
(C1 + C2)

2ε2
0 . (2.37)

Moreover, with J̃r = −2J̃
r

and J̃rr = 6J̃
r2 , we get

1∫
ε0

[(∂F

∂J̃
(q, J̃ )J̃r

)
r
+ 2

r

∂F

∂J̃
J̃r

]
r2χrrdr

=
1∫

ε0

4J̃ 2

q3 qrrχrrdr +
1∫

ε0

6J̃ 2

q2 χrrdr

≤ μ1‖χrr‖2
L2

r
+ CJ 4

0

μ1
‖qr‖2 + C

μ1
J 4

0 ε−2
0

≤ μ1‖χrr‖2
2 + C(1 + C2)

2. (2.38)

Lr
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Similarly, we have

1∫
ε0

J̃

q2 qrr
2χrrdr ≤ μ1‖χrr‖2

L2
r
+ C

μ1
ε2α

0 (1 + C2)
2. (2.39)

Finally, we substitute (2.35)-(2.39) into (2.32) and hence that

‖rχrr‖ ≤ Ĉ5[(1 + C1 + C2 + C3)ε0 + 1 + C2 + C2
2 + C2C3]. (2.40)

Now, we wish to choose suitable C1, C2 and C3 such that ρ̃ ∈ AC2,C3 .
Indeed, for any K1 > 0, C̃0 > 0, let

K2 := Ĉ5(2 + 2
√

Ĉ4C̃0(1 + K1) + 4Ĉ4C̃
2
0),

C1 := K1C̃0

1 + K1 + K2

and

C3 := K2.

Then, we deduce from (2.29) that

C2 = 2
√

Ĉ4C1 ≤ 2
√

Ĉ4C̃0K1

1 + K1 + K2
≤ 2

√
Ĉ4C̃0

and

C2 + C2
2 + C2C3 ≤ 2

√
Ĉ4C̃0 + 4Ĉ4C̃

2
0 + 2

√
Ĉ4C̃0K1

1 + K1 + K2
K2 ≤ 2

√
Ĉ4C̃0(1 + K1) + 4Ĉ4C̃

2
0 .

(2.41)
Therefore, we substitute (2.41) into (2.40) to get

‖rρ̃rr‖ = ‖rχrr‖ ≤ Ĉ5(2 + 2
√

Ĉ4C̃0(1 + K1) + 4Ĉ4C̃
2
0) = K2 = C3

provided that

(1 + C1 + C2 + C3)ε0 < 1

for ε0 
 1.
Next we will show that C− ≤ ρ̃ ≤ C+, where C−, C+ are given in (1.17). Define

D1(r) := D(r) +
(∂F

(q, J̃ )J̃r

)
+ 2 ∂F

J̃r − J̃

2 qr .

∂J̃ r r ∂J̃ q
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Then, we can rewrite (2.20)(a) as

(∂F

∂q
(q, J̃ )

)
r
ρ̃r + ∂F

∂q
(q, J̃ )ρ̃rr + 2

r

∂F

∂q
(q, J̃ )ρ̃r − ρ̃ = −D1(r). (2.42)

On one hand, the conditions 0 < c̃ ≤ D(r) and max
r∈[ε0,1]{r|A(r) − D(r)|} < C1ε0 assure that 

0 < c− ≤ D(r) ≤ c+ for some positive constants c− and c+. On the other hand, there holds that

∣∣∣(∂F

∂J̃
(q, J̃ )J̃r

)
r
+ 2

r

∂F

∂J̃
J̃r − J̃

q2 qr

∣∣∣
=

∣∣∣( J̃ 2
r + J̃ J̃rr

q2 − 2J̃ J̃rqr

q3

)
J̃r + 2

r

J̃ J̃r J̃r

q2 − J̃ J̃r J̃rr

q2 − J̃

q2 qr

∣∣∣ ≤ Cεα−2
0 .

Thus, 0 < c−
2 ≤ D1(r) ≤ c−

2 + c+ holds when 0 < ε0 
 1 and α > 2.
Then, setting ρ̄1 = ρ̃ − C+ we get

(∂F

∂q
(q, J̃ )

)
r
ρ̄1r + ∂F

∂q
(q, J̃ )ρ̄1rr + 2

r

∂F

∂q
(q, J̃ )ρ̄1r − ρ̄1 = −D1(r) + C+. (2.43)

We assume that ρ̄1 achieves the maximum value at point x1.
We claim that ρ̄1(x1) ≤ 0. If not, ρ̄1(x1) > 0, in view of the definition of C+, which yields 

that x1 ∈ (ε0, 1). Then it follows that ρ̄1r (x1) = 0 and ρ̄1rr (x1) ≤ 0, which leads to

((∂F

∂q
(q, J̃ )

)
r
ρ̄1r + ∂F

∂q
(q, J̃ )ρ̄1rr + 2

r

∂F

∂q
(q, J̃ )ρ̄1r − ρ̄1

)
(x1) < 0. (2.44)

However, the value of terms on the right-hand side of (2.43) at point x1 is equal to −D1(x1) +
C+ ≥ 0, which contradicts (2.44). Thus, ρ̄1(x1) ≤ 0 holds, which implies that ρ̃(r) ≤ C+.

Similarly, by setting ρ̄2 = ρ̃ − C−, we may show that ρ̃(r) ≥ C−. Thus, the proof is com-
plete. �

Next, we turn to the BVP of nonlinear elliptic equation (2.19).

Lemma 2.4. For 0 < ε0 
 1, (2.19) has a solution ρ̃ ∈ AC2,C3 . Furthermore, the stationary 
system (2.1)-(2.2) has a pair of solution (ρ̃, J̃ [ρ̃], �̃[ρ̃])(r) with C− ≤ ρ̃ ≤ C+ and J̃ [ρ̃] ≤ J0, 
where J0 is given by (1.15).

Proof. To do this, we first define a mapping S̃ : AC2,C3 → AC2,C3 with ρ̃(r) = S̃(q) given 
by (2.20). And, we claim that S̃ is continuous.

Indeed, given q1, q2 ∈ AC2,C3 , and J̃1 = J̃ [q1], J̃2 = J̃ [q2], then ρ̃1 = S̃(q1), ρ̃2 = S̃(q2) sat-
isfy

(
r2 ∂F

∂q1
(q1, J̃1)(ρ̃1r − ρ̃2r )

)
r
− r2(ρ̃1 − ρ̃2)

= −
(
r2

( ∂F

∂q1
(q1, J̃1) − ∂F

∂q2
(q2, J̃2)

)
ρ̃2r

)
r
+ f1 − f2, (2.45)
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where

fi = −
(
r2 ∂F

∂J̃i

(qi, J̃i)J̃ir

)
r
+ r2J̃i

q2
i

qir − D, i = 1,2.

Then, we multiply (2.45) by −(ρ̃1 − ρ̃2) and take the integration over [ε0, 1] by parts to get

1∫
ε0

r2 ∂F

∂q1
(q1, J̃1)(ρ̃1r − ρ̃2r )

2dr +
1∫

ε0

r2
( ∂F

∂q1
(q1, J̃1) − ∂F

∂q2
(q2, J̃2)

)
ρ̃2r (ρ̃1 − ρ̃2)rdr

+
1∫

ε0

r2(ρ̃1 − ρ̃2)
2dr = −

1∫
ε0

(f1 − f2)(ρ̃1 − ρ̃2)dr. (2.46)

Notice that

∣∣∣ ∂F

∂q1
(q1, J̃1) − ∂F

∂q2
(q2, J̃2)

∣∣∣ =
∣∣∣P ′(q1)

q1
− J̃ 2

1

q3
1

− P ′(q2)

q2
+ J̃ 2

2

q3
2

∣∣∣ ≤ C(|q1 − q2| + |J̃1 − J̃2|),

together with Lemma 2.2, we have

∣∣∣ 1∫
ε0

r2
( ∂F

∂q1
(q1, J̃1) − ∂F

∂q2
(q2, J̃2)

)
ρ̃2r (ρ̃1r − ρ̃2r )dr

∣∣∣
≤ μ2‖rρ̃1r − rρ̃2r‖2 + C

μ2

∣∣∣ ∂F

∂q1
− ∂F

∂q2

∣∣∣2

0
‖rρ̃2r‖2

≤ μ2‖rρ̃1r − rρ̃2r‖2 + Cε2
0

μ2
‖q1 − q2‖2

1 (2.47)

for a suitably small constant μ2 > 0.
On the other hand, an easy computation shows that

−
1∫

ε0

(f1 − f2)(ρ̃1 − ρ̃2)dr

= −
1∫

ε0

[(
− r2 ∂F

∂J̃1
(q1, J̃1)J̃1r + r2 ∂F

∂J̃2
(q2, J̃2)J̃2r

)
r
+ r2J̃1

q2
1

q1r − r2J̃2

q2
2

q2r

]
(ρ̃1 − ρ̃2)dr

=
1∫

ε0

(2rJ̃ 2
1

q2
1

− 2rJ̃ 2
2

q2
2

)
(ρ̃1r − ρ̃2r )dr

︸ ︷︷ ︸
−

1∫
ε0

( r2J̃1

q2
1

q1r − r2J̃2

q2
2

q2r

)
(ρ̃1 − ρ̃2)dr.

︸ ︷︷ ︸

� I1 � I2
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Then, it is easy to see that

|I1| =
∣∣∣ 1∫
ε0

[2(J̃1 + J̃2)(J̃1 − J̃2)

q2
1

+ 2J̃ 2
2

( 1

q2
1

− 1

q2
2

)]
(rρ̃1r − rρ̃2r )dr

∣∣∣
≤ μ2‖rρ̃1r − rρ̃2r‖2 + C

μ2
(ε2α−2

0 ‖J̃1 − J̃2‖2 + ε4α−4
0 ‖q1 − q2‖2)

≤ μ2‖rρ̃1r − rρ̃2r‖2 + C

μ2
ε2α

0 ‖q1 − q2‖2

and

|I2| =
∣∣∣ 1∫
ε0

[
− (rJ̃1 − rJ̃2)q1r + rJ̃2(q1r − q2r )

q2
1

− rJ̃2q2r

( 1

q2
1

− 1

q2
2

)]
(rρ̃1 − rρ̃2)dr

∣∣∣
≤ μ2‖rρ̃1 − rρ̃2‖2 + C

μ2
ε2α

0 ‖q1 − q2‖2
1,

which show that

∣∣∣ −
1∫

ε0

(f1 − f2)(ρ̃1 − ρ̃2)dr

∣∣∣ ≤ μ2‖rρ̃1 − rρ̃2‖2 + μ2‖rρ̃1r − rρ̃2r‖2 + C

μ2
ε2α

0 ‖q1 − q2‖2
1.

(2.48)

Substituting (2.47)-(2.48) into (2.46), together with ∂F
∂q1

= 1
q1

(
P ′(q1) − J̃ 2

1
q2

1

)
≥ c′

1
C+ , yields that

‖rρ̃1 − rρ̃2‖2 + ‖rρ̃1r − rρ̃2r‖2 ≤ Cε2
0‖q1 − q2‖2

1. (2.49)

Now, to estimate the ‖ρ̃1rr − ρ̃2rr‖, we multiply (2.45) by ρ̃1rr − ρ̃2rr again and integrate it 
over [ε0, 1] to get

1∫
ε0

(
r2 ∂F

∂q1
(q1, J̃1)(ρ̃1r − ρ̃2r )

)
r
(ρ̃1rr − ρ̃2rr )dr +

1∫
ε0

−r2(ρ̃1 − ρ̃2)(ρ̃1rr − ρ̃2rr )dr

+
1∫

ε0

(
r2

( ∂F

∂q1
(q1, J̃1) − ∂F

∂q2
(q2, J̃2)

)
ρ̃2r

)
r
(ρ̃1rr − ρ̃2rr )dr

=
1∫

ε0

(f1 − f2)(ρ̃1rr − ρ̃2rr )dr. (2.50)
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A straightforward computation shows that

1∫
ε0

(
r2 ∂F

∂q1
(q1, J̃1)(ρ̃1r − ρ̃2r )

)
r
(ρ̃1rr − ρ̃2rr )dr

=
1∫

ε0

2r
∂F

∂q1
(ρ̃1r − ρ̃2r )(ρ̃1rr − ρ̃2rr )dr +

1∫
ε0

r2 ∂F

∂q1
(ρ̃1rr − ρ̃2rr )

2dr

+
1∫

ε0

r2
(∂2F

∂q2
1

q1r + ∂2F

∂q1∂J̃1
J̃1r

)
(ρ̃1r − ρ̃2r )(ρ̃1rr − ρ̃2rr )dr

︸ ︷︷ ︸
� I3

.

Using the fact of (2.34), we obtain

|I3| =
∣∣∣ 1∫
ε0

r2
(P ′′(q1)q1r

q1
− P ′(q1)q1r

q2
1

+ 3J̃ 2
1 q1r

q4
1

− 2J̃1J̃1r

q3
1

)
(ρ̃1r − ρ̃2r )(ρ̃1rr − ρ̃2rr )dr

∣∣∣
≤ μ3‖rρ̃1rr − rρ̃2rr‖2 + C

μ3

(
|q1r |20 +

∣∣∣ J̃1

r

∣∣∣2

0

)
‖rρ̃1r − rρ̃2r‖2

≤ μ3‖rρ̃1rr − rρ̃2rr‖2 + C

μ3
‖q1 − q2‖2

1,

together with (2.49), which leads to

∣∣∣ 1∫
ε0

(
r2 ∂F

∂q1
(q1, J̃1)(ρ̃1r − ρ̃2r )

)
r
(ρ̃1rr − ρ̃2rr )dr

∣∣∣

≥ 1

2

1∫
ε0

∂F

∂q1
(rρ̃1rr − rρ̃2rr )

2dr − C‖q1 − q2‖2
1. (2.51)

For the second integration of (2.50), it follows from (2.49) that

∣∣∣ 1∫
ε0

−r2(ρ̃1 − ρ̃2)(ρ̃1rr − ρ̃2rr )dr

∣∣∣ ≤ μ3‖rρ̃1rr − rρ̃2rr‖2 + C

μ3
ε2

0‖q1 − q2‖2
1 (2.52)

for a suitably small constant μ3 > 0 to be specified.
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For the third integration of (2.50), it holds that

1∫
ε0

(
r2

( ∂F

∂q1
(q1, J̃1) − ∂F

∂q2
(q2, J̃2)

)
ρ̃2r

)
r
(ρ̃1rr − ρ̃2rr )dr

=
1∫

ε0

2r
( ∂F

∂q1
− ∂F

∂q2

)
ρ̃2r (ρ̃1rr − ρ̃2rr )dr +

1∫
ε0

r2
( ∂F

∂q1
− ∂F

∂q2

)
ρ̃2rr (ρ̃1rr − ρ̃2rr )dr

+
1∫

ε0

r2
( ∂F

∂q1
− ∂F

∂q2

)
r
ρ̃2r (ρ̃1rr − ρ̃2rr )dr

︸ ︷︷ ︸
� I4

.

Then, we deduce easily from (2.34) that

|I4| ≤
∣∣∣ 1∫
ε0

r2
(P ′′(q1)q1r

q1
− P ′(q1)q1r

q2
1

− P ′′(q2)q2r

q2
+ P ′(q2)q2r

q2
2

)
ρ̃2r (ρ̃1rr − ρ̃2rr )dr

+
1∫

ε0

r2
(3J̃ 2

1 q1r

q4
1

− 2J̃1J̃1r

q3
1

− 3J̃ 2
2 q2r

q4
2

+ 2J̃2J̃2r

q3
2

)
ρ̃2r (ρ̃1rr − ρ̃2rr )dr

∣∣∣
≤ μ3‖rρ̃1rr − rρ̃2rr‖2 + C

μ3
‖q1 − q2‖2

1,

which implies that

∣∣∣ 1∫
ε0

(
r2

( ∂F

∂q1
(q1, J̃1) − ∂F

∂q2
(q2, J̃2)

)
ρ̃2r

)
r
(ρ̃1rr − ρ̃2rr )dr

∣∣∣
≤ μ3‖rρ̃1rr − rρ̃2rr‖2 + C

μ3

(∣∣∣ ∂F

∂q1
− ∂F

∂q2

∣∣∣2

0
‖ρ̃2r‖2 +

∣∣∣ ∂F

∂q1
− ∂F

∂q2

∣∣∣2

0
‖rρ̃2rr‖2

)
+ C

μ3
‖q1 − q2‖2

1 ≤ μ3‖rρ̃1rr − rρ̃2rr‖2 + C

μ3
‖q1 − q2‖2

1. (2.53)

For the last integration of (2.50), we use Lemma 2.2 to obtain

∣∣∣ 1∫
ε0

(f1 − f2)(ρ̃1rr − ρ̃2rr )dr

∣∣∣

=
∣∣∣ 1∫ (

− r2 ∂F

∂J̃1
J̃1r + r2 ∂F

∂J̃2
J̃2r

)
r
(ρ̃1rr − ρ̃2rr )dr
ε0

77



M. Mei, X. Wu and Y. Zhang Journal of Differential Equations 277 (2021) 57–113
+
1∫

ε0

( r2J̃1

q2
1

q1r − r2J̃2

q2
2

q2r

)
(ρ̃1rr − ρ̃2rr )dr

∣∣∣

=
∣∣∣ 1∫
ε0

(
− 4rJ̃ 2

1 q1r

q3
1

+ 4rJ̃ 2
2 q2r

q3
2

− 6J̃ 2
1

q2
1

+ 6J̃ 2
2

q2
2

+ r2J̃1

q2
1

q1r − r2J̃2

q2
2

q2r

)
(ρ̃1rr − ρ̃2rr )dr

∣∣∣
≤

(
μ3 +

(J0

ε0

)2)‖rρ̃1rr − rρ̃2rr‖2 + C

μ3
‖q1 − q2‖2

1. (2.54)

Finally, we substitute (2.51)-(2.54) into (2.50) to get

‖rρ̃1rr − rρ̃2rr‖2 ≤ C‖q1 − q2‖2
1 (2.55)

for ε0 and μ3 satisfy Cεα−2
0 + 5μ3 <

c′
1

2C+ , which can be reached by the smallness of ε0 and μ3.
Accordingly, (2.49) and (2.55) imply that

‖ρ̃1 − ρ̃2‖2 ≤ Cε−1
0 ‖q1 − q2‖1,

which shows that S̃ is a continuous mapping in AC2,C3 for given ε0 
 1.
Having checked this claim, we can now return to the proof of Lemma 2.4. In fact, since 

H 2([ε0, 1]) is a compact embedding into C1([ε0, 1]), then AC2,C3 is a compact convex set of 
C1([ε0, 1]). Together with the Schauder fixed point theorem, there exists a fixed point ρ̃ ∈AC2,C3

such that S̃(ρ̃) = ρ̃. That is, ρ̃ is a solution of (2.19) in AC2,C3 .
Finally, thanks to Lemma 2.1, we see at once that (ρ̃, J̃ [ρ̃], �̃[ρ̃])(r) is a pair of solution of 

(2.1)-(2.2) with ρ̃ ∈AC2,C3 and J̃ [ρ̃] ≤ J0. Thus, the proof is complete. �
Based on the Lemma 2.1 and Lemma 2.4, we will complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Thanks to Lemma 2.1 and Lemma 2.4, it suffices to show the uniqueness 
of solution of (2.19) with C− ≤ ρ̃ ≤ C+.

Let ρ̃(1), ρ̃(2) be two solutions of (2.19) with C− ≤ ρ̃(i) ≤ C+. Then, ρ̃(1), ρ̃(2) satisfy

(r2(F (ρ̃(1), J̃ (1)) − F(ρ̃(2), J̃ (1)))r )r + (r2(F (ρ̃(2), J̃ (1)) − F(ρ̃(2), J̃ (2)))r )r − r2(ρ̃(1) − ρ̃(2))

+ r2J̃ (1)
( 1

ρ̃(1)
− 1

ρ̃(2)

)
r
− (r2J̃ (1) − r2J̃ (2))

( 1

ρ̃(2)

)
r
= 0, (2.56)

where J̃ (i) = J̃ [ρ̃(i)], i = 1, 2. Setting ζ = ρ̃(1) − ρ̃(2), then we rewrite (2.56) as

(r2(k(r)ζ )r )r +
(
r2

(2(J̃ (2))2 − 2(J̃ (1))2

r(ρ̃(2))2
− ρ̃

(2)
r

(ρ̃(2))3
[(J̃ (1))2 − (J̃ (2))2])

))
r

− r2ζ + r2J̃ (1)
(
g(r)ζ

)
r
− (r2J̃ (1) − r2J̃ (2))

( 1

ρ̃(2)

)
r
= 0, (2.57)

where
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k(r) =
1∫

0

(P ′(ρ̃(2) + v(ρ̃(1) − ρ̃(2)))

ρ̃(2) + v(ρ̃(1) − ρ̃(2))
− (J̃ (1))2

(ρ̃(2) + v(ρ̃(1) − ρ̃(2)))3

)
dv ≥ c′

1

C+
> 0 (2.58)

and

g(r) = −
1∫

0

( 1

(ρ̃(2) + v(ρ̃(1) − ρ̃(2)))2

)
dv.

We regard (2.57) as a new work system and multiply it by k(r)ζ . Consequently,

‖r(k(r)ζ )r‖2 + ‖√k(r)rζ‖2 ≤ 0 (2.59)

follows from the classical energy method, where the boundary condition ζ(ε0) = ζ(1) = 0 and 
the smallness of ε0 have been used. Therefore, we conclude from (2.59) that ζ = 0, namely, 
ρ̃(1) = ρ̃(2) for 0 < ε0 
 1. Thus, the proof is complete. �
3. Stability of steady-state

In order to obtain the stability of solution (ρ, j, �)(t, r) of (1.6)-(1.9), we consider the per-
turbation equations around the steady-state solution. Denote

σ := ρ − ρ̃, η := j − j̃ , φ := � − �̃, U :=
(

σ

η

)
, (3.1)

where (ρ̃, j̃ , �̃)(r) is the solution of (2.1)-(2.2) given in Theorem 1.1. Then (σ, η, φ)(t, r) sat-
isfies the perturbation systems

⎧⎪⎪⎨
⎪⎪⎩

σt + ηr + 2η
r

= 0, (a)

ηt +
(

j2

ρ
− j̃2

ρ̃

)
r
+ 2

r

(
j2

ρ
− j̃2

ρ̃

)
+ (P (ρ) − P(ρ̃))r − ρ̃φr − σ�̃r + η = σφr, (b)

φrr + 2φr

r
= σ, (c)

(3.2)

with the initial and boundary value

σ(t, ε0) = σ(t,1) = φ(t, ε0) = φ(t,1) = 0, (σ, η)(0, r) = (ρ0 − ρ̃, j0 − j̃ )(r). (3.3)

By multiplying (3.2)(c) by r2 and integrating it over [ε0, r] with respect to r , we get

r2φr(t, r) =
r∫

ε0

s2σ(t, s)ds + c3(t) (3.4)

for some function c3(t). Dividing (3.4) by r2 and integrating it over [ε0, 1] again, with the bound-
ary condition φ|∂� = 0, we have
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c3(t) = −ε0

1 − ε0

1∫
ε0

(
r−2

r∫
ε0

s2σ(t, s)ds
)
dr.

Then, we get the explicit formulas of φr(t, r) on σ(t, r)

r2φr(t, r) =
r∫

ε0

s2σ(t, s)ds − ε0

1 − ε0

1∫
ε0

r−2
( r∫

ε0

s2σ(t, s)ds
)
dr. (3.5)

Thus, setting

v := r2σ, w := r2η,

we may rewrite (3.2)(b) as

wt +
(
P ′(ρ)− j2

ρ2

)
vr + 2j

ρ
wr +

(
P ′′(ρ̃)ρ̃r − 2P ′(ρ̃)

r
− �̃r

)
v+w− r2ρ̃φr = r2σφr −R1 −R2,

(3.6)
where

R1(t, r) := −2r(2j̃ + η)η

ρ
+ 2rj̃2σ

ρρ̃
+ 2rσ (j̃2 + 2j̃η + η2)

ρ2

− r2(2j̃ + η)ηρ̃r

ρ2 + r2j̃2ρ̃r (2ρ̃ + σ)σ

ρ2ρ̃2 (3.7)

and

R2(t, r) := 2(P ′(ρ̃) − P ′(ρ))rσ + r2(P ′(ρ) − P ′(ρ̃) − P ′′(ρ̃)σ )ρ̃r . (3.8)

Furthermore, the problem of (3.2)-(3.3) is equal to that of the following matrix system:

Vt +AVr +MV+L = N , (3.9)

with the initial value and the boundary condition

v(t, ε0) = v(t,1) = 0, (v, w)(0, r) = (r2(ρ0 − ρ̃), r2(j0 − j̃ ))(r), (3.10)

where

V :=
(

v

w

)
= r2U, A :=

(
0 1

a(ρ, j)
2j
ρ

)
, M :=

(
0 0

k1(r) 1

)
, L :=

(
0

−r2ρ̃φr

)
,

N (t, r) :=
(

0
r2σφr(t, r) − R1(t, r) − R2(t, r)

)
, (3.11)

and
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a(ρ, j) := P ′(ρ) − j2

ρ2 , k1(r) := P ′′(ρ̃)ρ̃r − 2P ′(ρ̃)

r
− �̃r . (3.12)

By standard theory on symmetric hyperbolic system and the weighted energy estimates, we 
get the local existence of solution of (3.9)-(3.10), namely, the local existence of solution of 
(3.2)-(3.3). For the proofs we refer the reader to [26] and omit here.

Theorem 3.1 (Local existence of perturbation equations). For an arbitrarily given 0 < ε0 
 1, 
let (ρ̃, j̃ , φ̃)(r) be the solution of steady-state system (2.1)-(2.2) in Theorem 1.1, and assume that

∥∥∥(
ρ0 − ρ̃

j0 − j̃

)∥∥∥
L2

r

+ ε0

∥∥∥∂r

(
ρ0 − ρ̃

j0 − j̃

)∥∥∥
L2

r

+ ε2
0

∥∥∥∂2
r

(
ρ0 − ρ̃

j0 − j̃

)∥∥∥
L2

r

≤ Ĉεk
0

for k > 3
2 and some positive constant Ĉ. Then, there exist some positive constants t0 = t0(Ĉ, ε0), 

such that (3.2)-(3.3) has a unique local solution (σ, η)(t, r) ∈ [χ2,r ([0, t0]; �)]2 satisfying 
(1.13)-(1.14). Moreover, there holds that

∥∥∥(
σ

η

)
(t)

∥∥∥
L2

r (�)
+ ε0

∥∥∥(
∂σ

∂η

)
(t)

∥∥∥
L2

r (�)
+ ε2

0

∥∥∥(
∂2σ

∂2η

)
(t)

∥∥∥
L2

r (�)
≤ C′εk

0 , ∀t ∈ [0, t0],
(3.13)

for some positive constant C′ = C′(Ĉ), where ∂l means a derivative in both r and t of order 
l (l = 1, 2).

The remainder of this section will be devoted to the proof of Theorem 1.2. By Theorem 3.1 and 
(3.5), we know that the problem (3.2)-(3.3) with (1.18) has a unique local solution (σ, η, φ)(t, r)
with (3.13) for t ∈ [0, t0(C4, ε0)]. Thus, by the continuity theory, it suffices to establish the a 
priori estimates. Denote

n(t) := ‖U(t)‖L2
r
+ ε0‖Ur (t)‖L2

r
+ ε2

0‖Urr (t)‖L2
r
+ ‖φr(t)‖L2

r
(3.14)

and

N∗(τ ) := sup
0≤s≤τ

n(s). (3.15)

Let t∗ ∈ (0, ∞] be the maximal time of existence of the classical solution. We claim that the 
following Theorem holds.

Theorem 3.2 (The a priori estimates). Suppose that the initial perturbation satisfies (1.18) and 
t∗ ∈ (0, ∞] is the maximal time of existence of the classical solution (σ, η, φ)(t, r) to (3.2)-(3.3). 
Then, there exist some positive constant C5 > C4 such that, ∀ t ∈ (0, t∗),

N∗(t) ≤ C5ε
γ

0 (3.16)

with γ ≥ 5 , where N∗(t) is defined as in (3.15).
2
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Let

T = sup{t < t∗;N∗(τ ) ≤ 2C5ε
γ

0 ,∀τ ∈ [0, t]}, (3.17)

where C5 > C4 is a positive constant to be determined. It is obvious from (1.18) that T ∈ (0, t∗]. 
Next, we will use the following eight lemmas to prove Theorem 3.2, where we require t ∈ [0, T )

in Lemma 3.1-Lemma 3.6 of this section.

3.1. Basic energy estimates

Lemma 3.1. For t ∈ [0, T ), there holds that

d

dt

[ 1∫
ε0

( r2(j̃σ − ρ̃η)2

2ρρ̃2 + r2(G(ρ) − G(ρ̃) − G′(ρ̃)σ ) + r2φ2
r

2

)
(t, r)dr − ν1

1∫
ε0

ηr2φr

ρ̃
(t, r)dr

]

+
1∫

ε0

r2(j̃σ − ρ̃η)2

ρρ̃2 (t, r)dr + ν1c1

2
‖σ(t)‖2

L2
r
+ 3ν1

4
‖φr(t)‖2

L2
r

+ ν1ε0

1 − ε0

1∫
ε0

η(t, r)dr

1∫
ε0

η

ρ̃
(t, r)dr − ν1C6‖η(t)‖2

L2
r

≤ C
( |U(t)|0

ε0
+ J0

ε0

)
(‖σ(t)‖2

L2
r
+ ‖φr(t)‖2

L2
r
+ ‖η(t)‖2

L2
r
+ ‖ε0rσr t‖2 + ε2

0‖ηr(t)‖2
L2

r
) (3.18)

for some positive constants ν1, C6 and C, where T is defined as in (3.17) and ν1 will be specified
later.

Proof. To prove this Lemma, we introduce

F(ε, t, r) := r2(j̃ + εη)t +
( r2(j̃ + εη)2

ρ̃ + εσ

)
r
+ r2P ′(ρ̃ + εσ )(ρ̃ + εσ )r

−r2(ρ̃ + εσ )(�̃r + εφr) + r2(j̃ + εη), (3.19)

Z(ε, t, r) := F(ε, t, r)
(j̃ + εη)

ρ̃ + εσ
. (3.20)

Then we consider Z(1, t, r) − Z(0, t, r) − Zε(0, t, r) and integrate it over [ε0, 1] with respect 
to r . Following from (1.6)(b) and (2.1)(b) that F(1, t, r) = F(0, t, r) = 0, we have

1∫
ε0

(Z(1, t, r) − Z(0, t, r) − Zε(0, t, r))dr

=
1∫ [

F(1, t, r)
j

ρ
− F(0, t, r)

j̃

ρ̃
− Fε(0, t, r)

j̃

ρ̃
− F(0, t, r)

( j̃ + εη

ρ̃ + εσ

)
ε

∣∣∣
ε=0

]
(t, r)dr
ε0

82



M. Mei, X. Wu and Y. Zhang Journal of Differential Equations 277 (2021) 57–113
=
1∫

ε0

[F(1, t, r) − F(0, t, r) − Fε(0, t, r)] j̃
ρ̃

dr

=
1∫

ε0

Fεε(θ, t, r)
j̃

ρ̃
dr, (3.21)

where 0 ≤ θ ≤ 1 is a constant.
From the Sobolev inequality, there holds that, for t ≥ 0,

|U(t)|0 ≤ √
2‖U‖ 1

2 ‖Ur‖ 1
2 ≤ √

2ε−1
0 ‖U‖

1
2
L2

r
‖Ur‖

1
2
L2

r
≤ √

2ε
− 3

2
0 (‖U‖L2

r
+ ε0‖Ur‖L2

r
), (3.22)

|Ur (t)|0 ≤ √
2‖Ur‖ 1

2 ‖Urr‖ 1
2 ≤ √

2ε−1
0 ‖Ur‖

1
2
L2

r
‖Urr‖

1
2
L2

r

≤ √
2ε

− 5
2

0 (ε0‖Ur‖L2
r
+ ε2

0‖Urr‖L2
r
), (3.23)

|Ut (t)|0 ≤ √
2‖Ut‖ 1

2 ‖Utr‖ 1
2 ≤ √

2ε−1
0 ‖Ut‖

1
2
L2

r
‖Utr‖

1
2
L2

r

≤ √
2ε

− 5
2

0 (ε0‖Ut‖L2
r
+ ε2

0‖Utr‖L2
r
). (3.24)

Furthermore, if t ∈ [0, T ], we hence from the definition of T and the smallness of ε0 that

|U(t)|0 + ε0|Ur (t)|0 ≤ 2
√

2C5ε
γ− 3

2
0 
 1. (3.25)

Thus, the straightforward computations, together with Theorem 1.1 and (3.25), show that,

|ε0Fεε(ε, t, r)| ≤ C(|rφr |2 + |rσ |2 + |rη|2 + |ε0rσr |2 + |ε0rηr |2), ∀t ∈ [0, T ),

which yields that

∣∣∣ 1∫
ε0

(Z(1, t, r) − Z(0, t, r) − Zε(0, t, r))dr

∣∣∣

≤ C
J0

ε0

1∫
ε0

|ε0Fεε(θ, t, r)|dr

≤ C
J0

ε0
(‖φr‖2

L2
r
+ ‖σ‖2

L2
r
+ ‖η‖2

L2
r
+ ‖ε0σr‖2

L2
r
+ ‖ε0ηr‖2

L2
r
) (3.26)

for t ∈ [0, T ), where C is independent of C5 and ε0.
On the other hand, inspired by the methods mentioned in [12], we may rewrite Z(1, t, r) −

Z(0, t, r) − Zε(0, t, r) into another expression.
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In fact, (3.2)(a) and (3.2)(c) imply that

(r2φr)tr + (r2η)r = 0 (3.27)

holds. Then, from the fact r2j̃ = M0[ρ̃] = constant and (3.27), we have

(r2(ρ̃ + εσ ))t = ε(r2σ)t = −ε(r2η)r = −(r2(j̃ + εη))r (3.28)

and

(r2(�̃r + εφr))tr + (r2(j̃ + εη))r = 0, (3.29)

which gives

(r2(�̃r + εφr))t + r2(j̃ + εη) = βε(t)

for some function βε(t). By integrating it over [ε0, 1] and using the boundary condition 
φ(t, ε0) = φ(t, 1) = 0 we hence that

βε(t) = M0[ρ̃] + ε

1 − ε0

1∫
ε0

(r2η − 2rφt )dr,

which leads to

−r2(j̃ + εη) = (r2(�̃r + εφr))t − 1

1 − ε0

1∫
ε0

ε(r2η − 2rφt )dr − M0[ρ̃]. (3.30)

Based on (3.28)-(3.30), a straightforward but tedious computation shows that the each term 
of Z(1, t, r) − Z(0, t, r) − Zε(0, t, r) can be rewritten as

( r2j2

2ρ
− r2j̃2

2ρ̃
− r2j̃η

ρ̃
+ r2j̃2σ

2ρ̃2

)
t
=

( (rj̃σ − rρ̃η)2

2ρρ̃2

)
t
, (3.31)

( r2

2
�2

r − r2

2
�̃2

r − r2�̃rφr

)
t
=

( r2

2
φ2

r

)
t
, (3.32)

( r2j3

2ρ2 − r2j̃3

2ρ̃2 − r2
(3j̃2η

2ρ̃2 − j̃3σ

ρ̃3

))
r
=

(3r2j̃η2

2ρ̃2 + r2η3

2ρ̃2 + r2j̃3σ

ρ̃3 − r2j3

2ρ2ρ̃2 (2ρ̃σ + σ 2)
)

r
,

(3.33)

(r2G′(ρ)j − r2G′(ρ̃)j̃ − r2(G′′(ρ̃)σ j̃ + G′(ρ̃)η))r = (r2(G′(ρ) − G′(ρ̃))j − r2G′′(ρ̃)σ j̃ )r ,

(3.34)

and
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− �r

1 − ε0

1∫
ε0

(r2η − 2rφt )dr − �rM0[ρ̃] + �̃rM0[ρ̃] + �̃r

1 − ε0

1∫
ε0

(r2η − 2rφt )dr + φrM0[ρ̃]

= − φr

1 − ε0

1∫
ε0

(r2η − 2rφt )dr, (3.35)

where G′′(ρ) is defined by G′′(ρ) = P ′(ρ)
ρ

.
After integrating (3.31)-(3.35) over [ε0, 1], with σ(ε0) = σ(1) = φ(ε0) = φ(1) = 0, we have

1∫
ε0

(Z(1, t, r) − Z(0, t, r) − Zε(0, t, r))dr

= d

dt

[ 1∫
ε0

( r2(j̃σ − ρ̃η)2

2ρρ̃2 + r2(G(ρ) − G(ρ̃) − G′(ρ̃)σ ) + r2φ2
r

2

)
dr

]

+
1∫

ε0

r2(j̃σ − ρ̃η)2

ρρ̃2 dr +
(3r2j̃η2

2ρ̃2 + r2η3

2ρ̃2

)∣∣∣1

ε0
. (3.36)

Following Theorem 1.1 that

|rρ̃r |0 ≤ 2(‖rρ̃r‖ + ‖ρ̃r‖ + ‖rρ̃rr‖) ≤ 4(C2 + C3), and |j̃r |0 =
∣∣∣−2j̃

r

∣∣∣
0
≤ C

J0

ε0
≤ C,

(3.37)
which yields that

3r2j̃η2

2ρ̃2

∣∣∣1

ε0
=

1∫
ε0

(3rj̃η2

ρ̃2 + 3r2j̃rη
2

2ρ̃2 + 3r2j̃ηηr

ρ̃2 − 3r2j̃η2ρ̃r

ρ̃3

)
dr

≤ C
J0

ε0
(‖η(t)‖2

L2
r
+ ε2

0‖ηr(t)‖2
L2

r
)

and

r2η3

2ρ̃2

∣∣∣1

ε0
=

∫
ε0

( rη3

ρ̃2 + 3r2η2ηr

2ρ̃2 − r2η3ρ̃r

ρ̃3

)
dr ≤ C

|η|0
ε0

(‖η(t)‖2
L2

r
+ ε2

0‖ηr(t)‖2
L2

r
).

Therefore, it follows from (3.26) and (3.36) that

d

dt

[ 1∫ ( r2(j̃σ − ρ̃η)2

2ρρ̃2 + r2(G(ρ) − G(ρ̃) − G′(ρ̃)σ ) + r2φ2
r

2

)
(t, r)dr

]

ε0
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+
1∫

ε0

r2(j̃σ − ρ̃η)2

ρρ̃2 (t, r)dr

≤ C
(J0

ε0
+ |η|0

ε0

)
(‖φr(t)‖2

L2
r
+ ‖σ(t)‖2

L2
r
+ ‖η(t)‖2

L2
r
+ ε2

0‖σr(t)‖2
L2

r
+ ε2

0‖ηr(t)‖2
L2

r
)

(3.38)

for t ∈ [0, T ), where C is independent of C5 and ε0.
Compared (3.38) with (3.18), we have to estimate the term 

∫ 1
ε0

(σ 2 + φ2
r )dr . To the end, we 

divide (1.6)(b) and (2.1)(b) by ρ̃ and make difference of the resultant equations to get

ηt

ρ̃
+ (P (ρ) − P(ρ̃))r

ρ̃
− ρ

ρ̃
�r + �̃r + η

ρ̃
= − 1

ρ̃

[(j2

ρ

)
r
−

( j̃2

ρ̃

)
r

]
− 1

ρ̃

(2j2

ρr
− 2j̃2

ρ̃r

)
.

(3.39)

On one hand, �̃r = 1
ρ̃

[(
j̃2

ρ̃
+ P(ρ̃)

)
r
+ 2j̃2

ρ̃r
+ j̃

]
(see (2.1)(b)) gives

−ρ

ρ̃
�r + �̃r = −φr − σ

ρ̃
φr − σ

ρ̃
�̃r

= −φr − σ

ρ̃
φr − σP ′(ρ̃)ρ̃r

ρ̃2 + j̃2ρ̃rσ

ρ̃4 + 2j̃2σ

ρ̃3r
− σ j̃

ρ̃2 . (3.40)

On the other hand, it is easy to see

(P (ρ) − P(ρ̃))r

ρ̃
=

(P(ρ) − P(ρ̃)

ρ̃

)
r
+ (P (ρ) − P(ρ̃))ρ̃r

ρ̃2

=
(P(ρ) − P(ρ̃)

ρ̃

)
r
+ P ′(ρ̃)σ ρ̃r

ρ̃2 + (P (ρ) − P(ρ̃) − P ′(ρ̃)σ )ρ̃r

ρ̃2 . (3.41)

Thus, substituting (3.40)-(3.41) into (3.39) leads to

(P(ρ) − P(ρ̃)

ρ̃

)
r
− φr = −η + ηt

ρ̃
+ I10 + I11, (3.42)

where

I10 := − (P (ρ) − P(ρ̃) − P ′(ρ̃)σ )ρ̃r

ρ̃2 + σ

ρ̃
φr − j̃2ρ̃rσ

ρ̃4 − 2j̃2σ

ρ̃3r
+ σ j̃

ρ̃2

and

I11 := − 1

ρ̃

[(j2

ρ

)
r
−

( j̃2

ρ̃

)
r

]
− 1

ρ̃

(2j2

ρr
− 2j̃2

ρ̃r

)
.

Multiplying (3.42) by −r2φr and integrating it over [ε0, 1] by parts, together with (3.2)(c), 
we get
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1∫
ε0

(P(ρ) − P(ρ̃)

ρ̃

)
r2σdr +

1∫
ε0

(rφr)
2dr =

1∫
ε0

η + ηt

ρ̃
r2φrdr −

1∫
ε0

(I10 + I11)r
2φrdr. (3.43)

From (1.2), the first term on the left-hand side of (3.43) can be treated as follows

1∫
ε0

(P(ρ) − P(ρ̃)

ρ̃

)
r2σdr =

1∫
ε0

( 1∫
0

P ′(ρ̃ + sσ )

ρ̃
ds

)
r2σ 2dr ≥ c0‖σ(t)‖2

L2
r

(3.44)

for some positive constant c0. With the smallness of |U(t, ·)|0 for t ∈ [0, T ) (see (3.25)) and the 
boundedness of |rρ̃r |0 ≤ C (see (3.37)), we get

∣∣∣ 1∫
ε0

(I10 + I11)r
2φrdr

∣∣∣
≤ C

(J0

ε0
+ |U(t)|0

ε0

)
(‖φr(t)‖2

L2
r
+ ‖σ(t)‖2

L2
r
+ ‖η(t)‖2

L2
r
+ ε2

0‖σr(t)‖2
L2

r
+ ε2

0‖ηr(t)‖2
L2

r
).

(3.45)

In addition, differentiating (3.5) with respect to t and r gives

r2φtr =
r∫

ε0

s2σt (t, s)ds − ε0

1 − ε0

1∫
ε0

(
r−2

r∫
ε0

s2σt (t, s)ds
)
dr

= −(r2η(t, r) − ε2
0η(t, ε0)) + ε0

1 − ε0

1∫
ε0

r−2(r2η(t, r) − ε2
0η(t, ε0))dr

= −r2η(t, r) + ε0

1 − ε0

1∫
ε0

η(t, r)dr, (3.46)

which yields that

1∫
ε0

ηt + η

ρ̃
r2φrdr

=
1∫

ε0

[(ηr2φr

ρ̃

)
t
− 1

ρ̃
ηr2φtr

]
dr +

1∫
ε0

r2ηφr

ρ̃
dr

≤ d

dt

( 1∫
ηr2φr

ρ̃
(t, r)dr

)
+ 1

4
‖φr(t)‖2

L2
r
+ C6‖η(t)‖2

L2
r

ε0
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− ε0

1 − ε0

1∫
ε0

η(t, r)dr

1∫
ε0

η

ρ̃
(t, r)dr (3.47)

for some positive constant C6.
Then, substituting (3.44)-(3.47) into (3.43), we have

c0‖σ(t)‖2
L2

r
+ 3

4
‖φr(t)‖2

L2
r
+ ε0

1 − ε0

1∫
ε0

η(t, r)dr

1∫
ε0

η

ρ̃
(t, r)dr

≤ d

dt

( 1∫
ε0

ηr2φr

ρ̃
(t, r)dr

)
+ C6‖η(t)‖2

L2
r
+ C

(J0

ε0
+ |U(t)|0

ε0

)

× (‖σ(t)‖2
L2

r
+ ‖φr(t)‖2

L2
r
+ ‖η(t)‖2

L2
r
+ ε2

0‖σr(t)‖2
L2

r
+ ε2

0‖ηr(t)‖2
L2

r
). (3.48)

Finally, by taking the step as (3.38)+ ν1(3.48), we conclude that (3.18) holds. Thus, the proof 
is complete. �

Before establishing the first order and higher order energy estimates, we deal with the nonlin-
ear terms in Lemma 3.2 in advance.

Lemma 3.2. For 0 < ε0 
 1, there holds that, for t ∈ [0, T ),

|N (t, r)| ≤ C(J0 + |U(t)|0)(|rU(t, r)| + |rφr(t, r)|), (3.49)

|Nr (t, r)| ≤ C
(J0

ε0
+ |U(t)|0 + |rφr (t)|0

ε0

)
(|rU(t, r)| + |ε0rUr (t, r)|)

+C(J0 + |U(t)|0)|rU(t)|0|rρ̃rr (r)|, (3.50)

|Ntr (t, r)| ≤ C
(J0

ε0
+ |U(t)|0 + |rφr (t)|0

ε0
+ |Ur (t)|0

)
(|rUt (t, r)| + |ε0rUtr (t, r)|

+|rσr(t, r)|) + C(J0 + |U(t)|0)|rUt (t)|0|rρ̃rr (r)|, (3.51)

where C is independent of C5 and ε0, N (t, r) and T are defined in (3.11) and (3.17) respectively.

Proof. For 0 < ε0 
 1, by using (3.7) and (3.8), we have

|R1(t, r)| + |R2(t, r)| ≤ C(J0 + |U(t)|0)|rU(t, r)|.

Then, (3.49) follows from (3.11).
Similarly, differentiating (3.7) and (3.8) with respect to r and further differentiating the re-

sultant equation with respect to t , by a straightforward but tedious computation, we derive these 
estimates (3.50)-(3.51) presented in Lemma 3.2 for |U(t)|0 + ε0|Ur (t)|0 small (see (3.25)) and 
for |rρ̃r |0 ≤ C bounded (see (3.37)). Thus, the proof is complete. �
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3.2. First order energy estimates

By observation, we get the relations between Ut and Ur in Lemma 3.3.

Lemma 3.3. For 0 < ε0 
 1, there holds that, for t ∈ [0, T ),

|Ut (t)|0 ≤ C
(
|φr(t)|0 + |U(t)|0

ε0
+ |Ur (t)|0

)
,

|rUt (t)|0 ≤ C(|rφr (t)|0 + |U(t)|0 + |rUr (t)|0),

‖Ut (t)‖L2
r
≤ C

(
‖φr(t)‖L2

r
+ ‖U(t)‖L2

r

ε0
+ ‖Ur (t)‖L2

r

)
,

‖Ur (t)‖L2
r
≤ C

(
‖φr(t)‖L2

r
+ ‖U(t)‖L2

r

ε0
+ ‖Ut (t)‖L2

r

)
. (3.52)

Proof. Firstly, (3.2)(a) gives

σt = −ηr − 2η

r
,

which implies that

|σt (t)|0 ≤ C
(
|ηr(t)|0 + |η(t)|0

ε0

)
, |rσt (t)|0 ≤ C(|rηr (t)|0 + |η(t)|0),

‖σt (t)‖L2
r
≤ C(‖ηr(t)‖L2

r
+ ‖η(t)‖) ≤ C

(
‖ηr(t)‖L2

r
+ ‖η(t)‖L2

r

ε0

)
,

and

‖ηr(t)‖L2
r
≤ C(‖σt (t)‖L2

r
+ ‖η(t)‖) ≤ C

(
‖σt (t)‖L2

r
+ ‖η(t)‖L2

r

ε0

)
. (3.53)

Secondly, (2.1)(b) gives

�̃r = 1

ρ̃

[( j̃2

ρ̃
+ P(ρ̃)

)
r
+ 2j̃2

ρ̃r
+ j̃

]
,

which, together with (3.37), yields that

|r�̃r (r)|0 ≤ C and ‖�̃r‖ ≤ C. (3.54)

Then from (3.2)(b), we get

ηt = −2η(j̃r + ηr)

ρ
− 2j̃ηr

ρ
− 2j̃ j̃r

( 1

ρ
− 1

ρ̃

)
+ (η + 2j̃ )ηρr + j̃2σr

ρ2 + j̃2ρ̃r

( 1

ρ2 − 1

ρ̃2

)
−P ′(ρ)σr − (P ′(ρ) − P ′(ρ̃))ρ̃r − 2

r

( (η + 2j̃ )η

ρ
+ j̃2

( 1

ρ
− 1

ρ̃

))
+ ρ̃φr + σ�̃r

−η + σφr . (3.55)
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Thus, using the boundedness of |rρ̃r | + |j̃r | +
∣∣∣ j̃
r

∣∣∣ ≤ C (see (3.37)), the smallness of |U(t, ·)|0
for t ∈ [0, T ) (see (3.25)), we derive from (3.54) that

|ηt (t)|0 ≤ C
(
|φr(t)|0 + |U(t)|0

ε0
+ |Ur (t)|0

)
, |rηt (t)|0 ≤ C

(
|rφr(t)|0 + |U(t)|0 + |rUr (t)|0

)
and

‖ηt (t)‖L2
r
≤ C

(‖U(t)‖L2
r

ε0
+ ‖Ur (t)‖L2

r
+ ‖φr(t)‖L2

r

)
for t ∈ [0, T ).

On the other hand, we can rewrite (3.55) as

(
P ′(ρ) − j2

ρ2

)
σr = −

(
P ′(ρ) − j2

ρ2 −
(
P ′(ρ̃) − j̃2

ρ̃2

))
ρ̃r − ηt −

(2jjr

ρ
− 2j̃ j̃r

ρ̃

)

−2

r

(j2

ρ
− j̃2

ρ̃

)
+ ρ̃φr + σ�̃r − η + σφr .

We claim that for 0 < ε0 
 1, there exists a positive constant c1 such that the subsonic condi-
tion

inf
r∈�

(
P ′(ρ) − j2

ρ2

)
> c1 > 0, t ∈ [0, T ) (3.56)

holds, which is clear from the smallness of j̃ and |U(t)|0.
Thus, by using the estimates (3.53) and (3.56) we get, for t ∈ [0, T ), that

√
c1‖σr(t)‖L2

r
≤

∥∥∥
√

P ′(ρ) − j2

ρ2 rσr(t)

∥∥∥
≤ C

(‖σ(t)‖L2
r
+ ‖η(t)‖L2

r

ε0
+ ‖ηt (t)‖L2

r
+ ‖σt (t)‖L2

r
+ ‖φr(t)‖L2

r

)
.

The proof is complete. �
As shown in (3.12), a(ρ, j) := P ′(ρ) − j2

ρ2 , we naturally denote a(ρ̃, j̃ ) := P ′(ρ̃) − j̃2

ρ̃2 . Now, 

we look for a diagonal matrix D =
(

s̃ 0
0 h̃

)
, where s̃ = a(ρ̃, j̃ )h̃(r), and h̃ = h̃(r) is a weight 

function and will be technically specified later. It will act as an approximate symmetrizer of (3.9).
We multiply (3.9) by matrix D and get the following system:

DVt + AVr + MV+ L = N, (3.57)

where
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A = DA, M = DM, L = DL, N = DN ,

and A, M, L, N are given in (3.11).
Differentiating (3.57) with respect to r and making use of (3.57), we obtain

DVtr + AVrr + (Ar −DrA+ M)Vr + (Mr −DrM)V+ Lr −DrL = Nr −DrN .

(3.58)

Lemma 3.4 (First order energy estimates). For 0 < ε0 
 1, and for t ∈ [0, T ), there holds that

d

dt

( 1∫
ε0

[ s̃

2
ε2

0(v(t, r))2 + h̃

2
ε2

0(wr(t, r))
2
]
dr −

1∫
ε0

|b(U)|
2

h̃ε2
0(vr (t, r))

2dr

−
1∫

ε0

(
2P ′(ρ̃)

r
+ �̃r − P ′′(ρ̃)ρ̃r )r h̃ε2

0(v(t, r))2

2
dr −

1∫
ε0

ν2h̃ε2
0wrv(t, r)dr

)

+
(1

2
− ν2C7

)
‖ε0

√
h̃wr(t)‖2 + ν2c1

2
‖ε0

√
h̃vr (t)‖2

≤ C
(J0

ε0
+ |rφr(t)|0 + |U(t)|0

ε0
+ |Ur (t)|0 + |Ut (t)|0

)
× (‖U(t)‖2

L2
r
+ ε2

0‖Ur (t)‖2
L2

r
+ ‖ε0

√
h̃Vr (t)‖2) + C(‖φr(t)‖2

L2
r
+ ‖σ(t)‖2

L2
r
) (3.59)

for some positive constants ν2, C7 and C, independent of C5, T and ε0, T is defined as in (3.17), 

where ν2 will be specified later. Here V = r2U = r2
(

σ

η

)
and

h̃(r) = h0r
−2e

∫ r
ε0

P ′′(ρ̃)ρ̃r−�̃r
P ′(ρ̃)

(s)ds
(3.60)

for any positive constant h0.

Proof. Multiplying (3.58) by Vr and integrating it over [ε0, 1], we have

1∫
ε0

DVtr ·Vrdr +
1∫

ε0

AVrr ·Vrdr +
1∫

ε0

(Ar −DrA+ M)Vr ·Vrdr

+
1∫

ε0

(Mr −DrM)V ·Vrdr +
1∫

ε0

(Lr −DrL) ·Vrdr

=
1∫

ε0

(Nr −DrN ) ·Vrdr, (3.61)
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while

1∫
ε0

DVtr ·Vrdr =
1∫

ε0

(
s̃ 0
0 h̃

)(
vtr

wtr

)
·
(

vr

wr

)
dr

= d

dt

( 1∫
ε0

[ s̃

2
(vr (t, r))

2 + h̃

2
(wr(t, r))

2
]
dr

)
. (3.62)

We decompose matrix A as

A = A + AT

2
+ A − AT

2
=: Asymm + Askew, (3.63)

where AT is the transpose of A. Then, for the second term in (3.61), by the symmetry of Asymm

and skew symmetry of Askew , we have

1∫
ε0

AVrr ·Vrdr =
1∫

ε0

[1

2
((AVr ·Vr )r − ArVr ·Vr ) + AskewVrr ·Vr

]
dr. (3.64)

By the boundary condition wr(ε0) = −vt (ε0) = wr(1) = −vt (1) = 0 (see (3.2)(a) and (3.10)), 
we have

1∫
ε0

(AVr ·Vr )rdr = (AVr ·Vr )

∣∣∣1

ε0
=

[
s̃wrvr + (a(ρ, j)h̃vr + 2j

ρ
h̃wr)wr

]∣∣∣1

ε0
= 0.

Now, we collect all like terms of the type Vr ·Vr in (3.61) and (3.64) and get the following,

1∫
ε0

(Ar −DrA+ M − 1

2
Ar)Vr ·Vrdr

=
1∫

ε0

(DAr −DrA
2

+ M
)
Vr ·Vrdr

=
1∫

ε0

(q11(vr )
2 + (q12 + q21)vrwr + q22(wr)

2)dr, (3.65)

where
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q12 = −1

2
s̃r = −1

2
[a(ρ̃, j̃ )r h̃ + a(ρ̃, j̃ )h̃r ],

q21 = h̃a(ρ, j)r − h̃ra(ρ, j)

2
+ k1(r)h̃,

q22 =
h̃
(

2j
ρ

)
r
− h̃r

2j
ρ

2
+ h̃.

For the coefficient of cross-term vrwr in (3.65), we have

q12 + q21 = h̃

2
[a(ρ, j)r − a(ρ̃, j̃ )r ] − h̃r

2
[a(ρ, j) + a(ρ̃, j̃ )] + k1(r)h̃

= −P ′(ρ̃)h̃r + k1(r)h̃ + j̃2

ρ̃2 h̃r + h̃

2
[a(ρ, j)r − a(ρ̃, j̃ )r ] − h̃r

2
[a(ρ, j) − a(ρ̃, j̃ )],

where k1(r) = P ′′(ρ̃)ρ̃r − 2P ′(ρ̃)
r

− �̃r is given in (3.57). Thus, we may choose h̃ > 0 as follows:

h̃ = h0r
−2 exp

( r∫
ε0

P ′′(ρ̃)ρ̃r − �̃r

P ′(ρ̃)
(s)ds

)

for a positive constant h0, such that

P ′(ρ̃)h̃r = k1(r)h̃,

which yields that

q12 + q21 = j̃2

ρ̃2 h̃r + h̃

2
b(U)r − h̃r

2
b(U), (3.66)

where

b(U) := a(ρ, j) − a(ρ̃, j̃ ). (3.67)

Furthermore, the boundedness of rρ̃r , rj̃ , r�̃r in C0(�) (see (3.37) and (3.54)) and the small-
ness of |U(t, ·)|0 for t ∈ [0, T ) (see (3.25)) ensure that

|b(U)(t, r)| =
∣∣∣P ′(ρ) − j2

ρ2 − P ′(ρ̃) + j̃2

ρ̃2

∣∣∣ ≤ C|U(t)|0 ≤ Cε
1
2
0 
 1, (3.68)

|b(U)r (t, r)| =
∣∣∣P ′′(ρ)ρr − 2jjr

ρ2 + 2j2ρr

ρ3 −
(
P ′′(ρ̃)ρ̃r − 2j̃ j̃r

ρ̃2 + 2j̃2ρ̃r

ρ̃3

)∣∣∣
≤ C

( |U(t)|0
ε0

+ |Ur (t)|0
)
, (3.69)

and
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q22 =
h̃
(

2j
ρ

)
r
− h̃r

2j
ρ

2
+ h̃ ≥ h̃ − C

(
|Ur (t)|0 + |U(t)|0

ε0
+ J0

ε0

)
h̃ (3.70)

for t ∈ [0, T ), where C is independent of C5 and ε0.
Therefore, substituting (3.66)-(3.70) into (3.65) gives

1∫
ε0

(Ar −DrA+ M − 1

2
Ar)Vr ·Vrdr

≥
1∫

ε0

[
− C

(
|Ur (t)|0 + |U(t)|0

ε0
+ J0

ε0

)
h̃|vrwr |

+
(
h̃ − C

(
|Ur (t)|0 + |U(t)|0

ε0
+ J0

ε0

)
h̃
)
(wr)

2
]
dr

≥ ‖
√

h̃wr(t)‖2 − C
(
|Ur (t)|0 + |U(t)|0

ε0
+ J0

ε0

)
‖
√

h̃Vr (t)‖2, ∀t ∈ [0, T ), (3.71)

where we have used the fact that |h̃r | ≤ Cr−1h̃ from |k1(r)| ≤ C
r

.
On the other hand, from the definition of matrix Askew (3.63) and the equality wrr = −vtr

(see (3.2)(a)), we get

AskewVrr ·Vr = 1

2
(b(U)vtrvr h̃ − b(U)vrrvt h̃)

=
( h̃b(U)

2
(vr )

2
)

t
− h̃

2
b(U)t (vr )

2 −
( h̃

2
b(U)vrvt

)
r

− h̃r

2
b(U)vrwr − h̃

2
b(U)rvrwr . (3.72)

Similar with (3.68), from the definition of b(U) given in (3.67), we get

|b(U)t | =
∣∣∣P ′′(ρ)ρt − 2jjt

ρ2 + 2j2ρt

ρ3

∣∣∣ ≤ C|Ut (t)|0,

which yields, together with (3.68) and the boundary condition of vt (ε0) = vt (1) = 0 (see (3.10)), 
that

∣∣∣ 1∫
ε0

AskewVrr ·Vrdr

∣∣∣

≤ d

dt

( 1∫
ε0

b(U)

2
h̃(r)(vr (t, r))

2dr
)

+ C
( |U(t)|0

ε0
+ |Ur (t)|0 + |Ut (t)|0

)

× (‖
√

h̃vr (t)‖2 + ‖
√

h̃wr(t)‖2), (3.73)
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where |h̃r | is replaced by Cr−1h̃.
For the fourth term of the left-hand side in (3.61), we use the fact wr = −vt (see (3.2)(a)) to 

get

1∫
ε0

(Mr −DrM)V ·Vrdr = −
1∫

ε0

k1r (r)h̃vvtdr

= − d

dt

( 1∫
ε0

k1r (r)h̃(r)(v(t, r))2

2
dr

)
, (3.74)

where k1r (r) is the derivative of k1(r) given in (3.57).
Next, from (3.54) and Theorem 1.1, we notice that

∣∣∣ r∫
ε0

�̃r − P ′′(ρ̃)ρ̃r

P ′(ρ̃)
dr

∣∣∣ ≤ C(‖�̃r‖ + ‖ρ̃r‖) ≤ c2

holds for some positive constant c2, independent of ε0. Thus, it follows that

h0e
−c2r−2 < h̃(r) < h0e

c2r−2. (3.75)

Therefore, with the boundedness of rρ̃r (see (3.37)) in C0(�) and the definition of L given 
in (3.11), in view of (r2φr)r = r2σ (see (3.2)(c)), we can deal with the fifth term of the left-hand 
side in (3.61) as follows:

∣∣∣ 1∫
ε0

(Lr −DrL) ·
(

vr

wr

)
dr

∣∣∣ =
∣∣∣ −

1∫
ε0

(ρ̃r r
2φr + ρ̃r2σ)h̃wrdr

∣∣∣

≤ C

1∫
ε0

|
√

h̃rφr ||
√

h̃wr |dr + C

1∫
ε0

|
√

h̃wr ||r2
√

h̃σ |dr

≤ 1

4
‖
√

h̃wr(t)‖2 + C(‖φr(t)‖2 + ‖σ(t)‖2
L2

r
), (3.76)

where, in the last step we have used (3.75).
Finally, using Lemma 3.2 and (3.75) again, we get the following for the last term of the left-

hand side in (3.61),

∣∣∣ 1∫
ε0

(Nr −DrN ) ·
(

vr

wr

)
dr

∣∣∣

≤ C

∣∣∣ 1∫
h̃Nr ·Vrdr

∣∣∣

ε0
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≤ C
(J0

ε0
+ |U(t)|0 + |rφr(t)|0

ε0

)
(‖U(t)‖2 + ‖rUr (t)‖2 + ‖

√
h̃Vr (t)‖2)

+ C(J0 + |U(t)|0)|rU(t)|0
1∫

ε0

h̃|rρ̃rr ||Vr |dr.

︸ ︷︷ ︸
� I12

(3.77)

In view of ‖rρ̃rr‖ ≤ C (see Theorem 1.1) and (3.75), we have

I12 ≤ C
( (J0 + |U(t)|0)|rU(t)|0

ε0

) 1∫
ε0

|rρ̃rr ||
√

h̃Vr |dr

≤ C
(J0 + |U(t)|0

ε0

)
|rU(t)|0‖

√
h̃Vr (t)‖

≤ C
(J0 + |U(t)|0

ε0

)
(‖U(t)‖2 + ‖rUr (t)‖2 + ‖

√
h̃Vr (t)‖2),

which leads to

∣∣∣ 1∫
ε0

(Nr −DrN ) ·
(

vr

wr

)
dr

∣∣∣
≤ C

(J0

ε0
+ |U(t)|0 + |rφr (t)|0

ε0

)
(‖U(t)‖2 + ‖rUr (t)‖2 + ‖

√
h̃Vr (t)‖2). (3.78)

Therefore, substituting (3.61), (3.64), (3.71), (3.73)-(3.78) into (3.61), together with Lem-
ma 3.3, implies that, for t ∈ [0, T ),

d

dt

[ 1∫
ε0

( s̃

2
(vr (t, r))

2 + h̃

2
(wr(t, r))

2
)
dr −

1∫
ε0

|b(U)|
2

h̃(r)(vr (t, r))
2dr

]
+ 1

2
‖
√

h̃wr(t)‖2

≤ − d

dt

( 1∫
ε0

k1r (r)h̃(r)(v(t, r))2

2
dr

)
+ C(‖φr(t)‖2 + ‖σ(t)‖2

L2
r
)

+ C
(J0

ε0
+ |Ur (t)|0 + |U(t)|0 + |rφr (t)|0

ε0

)
(‖U(t)‖2 + ‖Ur (t)‖2

L2
r
+ ‖

√
h̃Vr (t)‖2).

(3.79)

To the proof end, we still need additional estimates for

1∫
h̃(r)(vr (t, r))

2dr.
ε0
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Multiplying (3.58) by − 
(

0
v

)
and integrating it over [ε0, 1] gives

1∫
ε0

DVtr ·
(

−
(

0
v

))
dr +

1∫
ε0

[AVrr + (Ar −DrA+ M)Vr ] ·
(

−
(

0
v

))
dr

+
1∫

ε0

(Mr −DrM)V ·
(

−
(

0
v

))
dr +

1∫
ε0

(Lr −DrL) ·
(

−
(

0
v

))
dr

=
1∫

ε0

(Nr −DrN ) ·
(

−
(

0
v

))
dr. (3.80)

With the fact wr = −vt (see (3.2)(a)) and a(ρ, j) = P ′(ρ) − j2

ρ2 > c1 (see (3.56)), we get

−
1∫

ε0

DVtr ·
(

0
v

)
dr = − d

dt

( 1∫
ε0

h̃wrvdr
)

−
1∫

ε0

h̃(r)(wr(t, r))
2dr (3.81)

and

−
1∫

ε0

AVrr ·
(

0
v

)
dr −

1∫
ε0

(Ar −DrA+ M)Vr ·
(

0
v

)
dr

=
1∫

ε0

(
a(ρ, j)h̃vr + 2j

ρ
h̃wr

)
vrdr +

1∫
ε0

(DrA− M)Vr ·
(

0
v

)
dr

≥ c1

2
‖
√

h̃vr‖2 − C‖
√

h̃wr‖2 −
1∫

ε0

(DrA− M)Vr ·
(

0
v

)
dr.

Recall that |rk1(r)| ≤ C and |h̃r | ≤ Cr−1h̃. Together with (3.75), we have

1∫
ε0

(DrA− M)Vr ·
(

0
v

)
dr

=
1∫

ε0

[
(a(ρ, j)h̃r − k1(r)h̃)vr +

(2j

ρ
h̃r − h̃

)
wr

]
vdr

≤ c1

4
‖
√

h̃vr (t)‖2 + C‖σ(t)‖2 + C‖
√

h̃wr(t)‖2.
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Thus, it follows that

−
1∫

ε0

AVrr ·
(

0
v

)
dr −

1∫
ε0

(Ar −DrA+ M)Vr ·
(

0
v

)
dr

≥ c1

4
‖
√

h̃vr (t)‖2 − C‖σ(t)‖2 − C‖
√

h̃wr(t)‖2. (3.82)

Next we consider the third term of the left-hand side in (3.80). Differentiating k1(r) =
P ′′(ρ̃)ρ̃r − 2P ′(ρ̃)

r
− �̃r (see (3.12)) with respect to r , and by straightforward computations we 

get

|k1r (r)| ≤ C
( 1

r2 + |ρ̃rr |
)
, (3.83)

which, together with the inequality ‖rρ̃rr‖ ≤ C in Theorem 1.1 and (3.75), implies that

∣∣∣ −
1∫

ε0

(Mr −DrM)V ·
(

0
v

)
dr

∣∣∣ =
∣∣∣ 1∫
ε0

k1r h̃(r)(v(t, r))2dr

∣∣∣

≤
∣∣∣ 1∫
ε0

h̃
( 1

r2 + |ρ̃rr |
)
(v(t, r))2dr

∣∣∣
≤ C‖σ‖2 + C‖σ‖(‖σ‖ + ‖rσr‖)
≤ c1

8
‖
√

h̃vr (t)‖2 + C‖σ(t)‖2. (3.84)

Here in last step we have used ‖rσr‖ ≤ C(‖
√

h̃vr (t)‖ + ‖σ(t)‖).
For the last two terms of the left-hand side in (3.80), we carry out the same argument as in 

proof (3.76) and (3.78) to prove

∣∣∣ −
1∫

ε0

(Lr −DrL) ·
(

0
v

)
dr

∣∣∣ =
∣∣∣ 1∫
ε0

(ρ̃r r
2φr + ρ̃r2σ)h̃vdr

∣∣∣
≤ C

(
‖φr(t)‖2

L2
r
+ ‖σ(t)‖2

)
(3.85)

and

∣∣∣ −
1∫

ε0

(Nr −DrN ) ·
(

0
v

)
dr

∣∣∣
≤ C

(J0

ε0
+ |U(t)|0 + |rφr(t)|0

ε0

)
(‖U(t)‖2 + ‖Ur (t)‖2

L2
r
). (3.86)
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Then, substituting (3.81), (3.82), (3.84)-(3.86) into (3.80), we get

c1

8
‖
√

h̃vr (t)‖2

≤ d

dt

( 1∫
ε0

h̃wrvdr
)

+ C7‖
√

h̃wr‖2 + C(‖σ(t)‖2 + ‖φr(t)‖2
L2

r
)

+ C
(J0

ε0
+ |U(t)|0 + |rφr(t)|0

ε0

)
(‖U(t)‖2 + ‖Ur (t)‖2

L2
r
). (3.87)

And by taking the step as ε2
0[(3.79) + ν2(3.87)], we verify that (3.59) holds. Thus, the proof 

is complete. �
3.3. Second order energy estimates

Similar with Lemma 3.3, we can get the following relations between Utr and Urr .

Lemma 3.5. For 0 < ε0 
 1 and for t ∈ [0, T ), it holds that

ε2
0‖Urr (t)‖L2

r
≤ C(ε2

0‖Utr (t)‖L2
r
+ ε0‖Ur (t)‖L2

r
+ ‖U(t)‖L2

r
+ ‖φr(t)‖L2

r
), (3.88)

ε2
0‖Utr (t)‖L2

r
≤ C(ε2

0‖Urr (t)‖L2
r
+ ε0‖Ur (t)‖L2

r
+ ‖U(t)‖L2

r
+ ‖φr(t)‖L2

r
), (3.89)

where U =
(

σ

η

)
, T is defined as in (3.17), and C is independent of C5, T and ε0.

Proof. Differentiating (3.9) with respect to r , we have

Vtr +ArVr +AVrr +MrV+MVr +Lr = Nr .

Since V = r2U, we replace V by U to get

−rAUrr = rUtr +
(2A

r
+Ar +M

)
rUr +

(−2A
r

+Ar +M+ rMr

)
U

+
(Lr

r
− 2L

r2

)
+

(Nr

r
− 2N

r2

)
. (3.90)

In the same way as in proof (3.25), it follows that, for t ∈ [0, T ),

|rUr (t)|0 ≤ √
2‖rUr (t)‖ 1

2 (‖Ur (t)‖ + ‖rUrr )(t)‖) 1
2 ≤ ε

1
2
0 
 1, (3.91)

which leads to |rρr |0 + |rjr |0 ≤ C due to the boundedness of |rρ̃r |0 + |rj̃r |0 as shown in (3.37), 
where C is independent of C5, T and ε0.

Consequently, it is easy to verify that

∣∣∣∣∣∣ε2
0

(2A +Ar +M
)
rUr (t)

∣∣∣∣∣∣ ≤ Cε0||rUr (t)||

r
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and

∥∥∥ε2
0

(Lr

r
− 2L

r2

)
(t)

∥∥∥ =
∥∥∥ε2

0

( ρ̃r r
2φr + ρ̃r2σ

r
+ r2ρ̃φr

r2

)∥∥∥ ≤ C(‖φr(t)‖L2
r
+ ‖σ(t)‖L2

r
).

In addition, using the inequality (3.83), we have

‖rMr ε
2
0U‖ = C‖rk1r ε

2
0σ‖ ≤ C

∥∥∥(1

r
+ |rρ̃rr |

)
ε2

0σ

∥∥∥ ≤ C(‖σ‖L2
r
+ ε0‖σr‖L2

r
).

On the other hand, note that

|φr(t)|0 ≤ √
2‖φr(t)‖ 1

2 ‖r−1φr(t) + σ(t)‖ 1
2

≤ √
2ε

− 3
2

0 (‖φr(t)‖L2
r
+ ‖σ(t)‖L2

r
) ≤ ε

1
2
0 
 1, ∀t ∈ [0, T ) (3.92)

holds, together with the smallness of |U(t, ·)|0 (see (3.25)) and Lemma 3.2, which yields that

∥∥∥ε2
0

(Nr

r
− 2N

r2

)
(t)

∥∥∥
≤ C

(
J0 + ε0|φr(t)|0 + |U(t)|0

)
(‖φr(t)‖L2

r
+ ‖U(t)‖L2

r
+ ε0‖Ur (t)‖L2

r
)

≤ C(‖φr(t)‖L2
r
+ ‖U(t)‖L2

r
+ ε0‖Ur (t)‖L2

r
)

for t ∈ [0, T ).
Therefore, it follows from the above relations that

‖ε2
0rAUrr (t)‖ ≤ C(ε4

0‖Utr (t)‖L2
r
+ ε0‖Ur (t)‖L2

r
+ ‖U(t)‖L2

r
+ ‖φr(t)‖L2

r
). (3.93)

Recall that

ε2
0rAUrr =

(
ε2

0rηrr

a(ρ, j)ε2
0rσrr + 2j

ρ
ε2

0rηrr

)
,

thus, in view of the inequality (3.56), we have

ε2
0‖Urr (t)‖L2

r
≤ C(ε4

0‖Utr (t)‖L2
r
+ ε0‖Ur (t)‖L2

r
+ ‖U(t)‖L2

r
+ ‖φr(t)‖L2

r
).

Similarly, (3.89) can be deduced from (3.90). Thus, the proof is complete. �
Lemma 3.6 (Second order energy estimates). For 0 < ε0 
 1 and for t ∈ [0, T ), there holds that

d

dt

[ 1∫
ε0

( s̃

2
ε4

0(vtr )
2 + h̃

2
ε4

0(wtr )
2
)
dr −

1∫
ε0

b(U)

2
h̃ε4

0(vtr )
2dr −

1∫
ε0

k1r h̃

2
ε4

0(vt )
2dr

]

+
(1 − C8ν3

)
‖ε2

0

√
h̃wtr (t)‖2 + ν3c1 ‖ε2

0

√
h̃vtr (t)‖2
2 4
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≤ C
(J0

ε0
+ |Ur (t)|0 + |Ut (t)|0 + |U(t)|0

ε0
+ |rφr(t)|0

)
×

(
ε2

0‖Ut (t)‖2
L2

r
+ ε4

0‖Utr (t)‖L2
r
+ ε2

0‖σr(t)‖2
L2

r
+ ‖ε2

0

√
h̃Vtr (t)‖2 + ‖ε0

√
h̃Vr (t)‖2

+ ‖ε2
0

√
h̃vrr (t)‖2

)
+ C‖η(t)‖2

L2
r
+ C9‖ε0

√
h̃wr(t)‖2 (3.94)

for some positive constant ν3 to be specified. Here V = r2U =
(

r2σ

r2η

)
, C, C8, C9 are some 

positive constants independent of C5, T and ε0, and k1(r), h̃, b(U) are respectively given in 
(3.12), (3.60) and (3.67).

Proof. Differentiating (3.58) with respect to t , we get

[D∂t + A∂r + (Ar −DrA+ M)]Vtr +DMrVt + AtVrr +DAtrVr +DLtr = DNtr ,

(3.95)

where D =
(

s̃ 0
0 h̃

)
, A = DA, M = DM and A, M, L, N are given in (3.11).

Multiplying (3.95) by Vtr and integrating it over [ε0, 1], we have

1∫
ε0

[(D∂t + A∂r + (Ar −DrA+ M))Vtr ·Vtr +DMrVt ·Vtr ]dr +
1∫

ε0

AtVrr ·Vtrdr

+
1∫

ε0

DAtrVr ·Vtrdr +
1∫

ε0

DLtr ·Vtrdr =
1∫

ε0

DNtr ·Vtrdr. (3.96)

In the same way as in proof of Lemma 3.4, then we get

1∫
ε0

[(D∂t + A∂r + (Ar −DrA+ M))Vtr ·Vtr +DMrVt ·Vtr ]dr

≥ d

dt

[ 1∫
ε0

( s̃

2
(vtr )

2 + h̃

2
(wtr )

2
)
dr

]
− d

dt

( 1∫
ε0

b(U)

2
h̃(r)(vtr )

2dr
)

− d

dt

( 1∫
ε0

k1r h̃

2
(vt )

2dr
)

+ ‖
√

h̃wtr (t)‖2 − C
(J0

ε0
+ |U(t)|0

ε0
+ |Ur (t)|0

)
(‖

√
h̃vtr (t)‖2 + ‖

√
h̃wtr (t)‖2). (3.97)

Note that

|a(ρ, j)t | +
∣∣∣(2j

ρ

)
t

∣∣∣ =
∣∣∣P ′′(ρ)ρt − 1jjt

ρ2 + 2j2ρt

ρ3

∣∣∣ +
∣∣∣2jt

ρ
− 2jρt

ρ2

∣∣∣ ≤ C|Ut |0, (3.98)

which yields
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∣∣∣ 1∫
ε0

AtVrr ·Vtrdr

∣∣∣ =
∣∣∣ 1∫
ε0

(
a(ρ, j)t h̃vrr +

(2j

ρ

)
t
h̃wrr

)
wtrdr

∣∣∣
≤ C|Ut (t)|0(‖

√
h̃vrr (t)‖2 + ‖

√
h̃vtr (t)‖2 + ‖

√
h̃wtr (t)‖2). (3.99)

For the third term of left-hand side in (3.96), it holds that

1∫
ε0

DAtrVr ·Vtrdr =
1∫

ε0

a(ρ, j)tr h̃vrwtrdr +
1∫

ε0

(2j

ρ

)
tr

h̃wrwtrdr =: I13 + I14. (3.100)

It follows from Lemma 3.3 and the relations (3.25), (3.91)-(3.92) that

|rUt (t)|0 ≤ C(|rφr (t)|0 + |U(t)|0 + |rUr |0) ≤ Cε
1
2
0 
 1, ∀t ∈ [0, T ), (3.101)

together with the boundedness |rρr |0 + |rjr |0 ≤ C (see (3.91)) and relations σtr = vtr −
2rσt , ηtr = wtr − 2rηt , which yields that

|I13|

=
∣∣∣

1∫
ε0

(
P ′′′(ρ)ρrσt + p′′(ρ)σtr − 2jrηt + 2jηtr

ρ2 + 4jηtρr

ρ3 + 4jjrσt + 2j2σtr

ρ3 − 6j2σtρr

ρ4

)

× h̃vrwtrdr

∣∣∣ ≤ C
(J0

ε0
+ |U|0

ε0
+ |Ur |0 + |Ut |0

)(∥∥∥
√

h̃vr

r

∥∥∥2 + ‖
√

h̃wtr‖2 + ‖
√

h̃vtr‖2
)

(3.102)

and

|I14| =
∣∣∣ 1∫
ε0

(2ηtr

ρ
− 2ηtρr

ρ2 − 2jrσt + 2jσtr

ρ2 + 4jσtρr

ρ3

)
h̃wrwtrdr

∣∣∣

≤ C
(J0

ε0
+ |U|0

ε0
+ |Ut |0 + |Ur |0

)(∥∥∥
√

h̃wr

r

∥∥∥2 + ‖
√

h̃vtr‖2 + ‖
√

h̃wtr‖2
)
. (3.103)

Thus, we may conclude that

∣∣∣ 1∫
ε0

DAtrVr ·Vtrdr

∣∣∣
≤ C

(J0 + |U(t)|0 + |Ur (t)|0 + |Ut (t)|0
)
(‖

√
h̃Vtr (t)‖2 + ‖r−1

√
h̃Vr (t)‖2). (3.104)
ε0 ε0
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For the last term of left hand-side in (3.96), we get

1∫
ε0

DLtr ·Vtrdr = −
1∫

ε0

h̃
[
ρ̃r

(
− r2η + ε0

1 − ε0

1∫
ε0

ηdr
)

+ ρ̃r2σt

]
wtrdr

≤ ‖
√

h̃wtr (t)‖2

2
+ C(ε−4

0 ‖η(t)‖2
L2

r
+ ‖σt (t)‖2

L2
r
), (3.105)

where we have used the boundedness of rρ̃r (see (3.37)) in C0(�) and (3.75).
Similarly, by the method applied in (3.78), the estimates of Ntr in Lemma 3.2 give

∣∣∣ 1∫
ε0

DNtr ·Vtrdr

∣∣∣ ≤ C

1∫
ε0

h̃|Ntr ·Vtr |dr

≤ C
(J0

ε0
+ |U(t)|0 + |rφr |0

ε0
+ |Ur (t)|0

)
× (‖

√
h̃Vtr (t)‖2 + ‖Ut (t)‖2 + ‖Utr (t)‖2

L2
r
+ ‖σr(t)‖2). (3.106)

Thus, substituting (3.104)-(3.106) into (3.96), we have

d

dt

[ 1∫
ε0

( s̃

2
(vtr )

2 + h̃

2
(wtr )

2
)
dr −

1∫
ε0

b(U)

2
h̃(r)(vtr )

2dr −
1∫

ε0

k1r h̃

2
(vt )

2dr
]
+ 1

2
‖
√

h̃wtr (t)‖2

≤ C
(J0

ε0
+ |U(t)|0 + |rφr |0

ε0
+ |Ur (t)|0 + |Ut (t)|0

)
× (‖

√
h̃Vtr (t)‖2 + ‖Ut (t)‖2 + ‖Utr (t)‖2

L2
r
+ ‖σr(t)‖2 + ‖

√
h̃vrr (t)‖2 + ‖r−1

√
h̃Vr (t)‖2)

+ Cε−4
0 (‖η(t)‖2

L2
r
+ ε2

0‖σt (t)‖2
L2

r
). (3.107)

To the proof end, we still need additional estimates for

1∫
ε0

h̃(r)(vtr )
2dr.

We multiply (3.95) by − 
(

0
vt

)
and integrating it over [ε0, 1] and have

1∫
[D∂t + A∂r + (Ar −DrA+ M)]Vtr ·

(
−

(
0
vt

))
dr +

1∫
DMrVt ·

(
−

(
0
vt

))
dr
ε0 ε0
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+
1∫

ε0

AtVrr ·
(

−
(

0
vt

))
dr +

1∫
ε0

DAtrVr ·
(

−
(

0
vt

))
dr +

1∫
ε0

DLtr ·
(

−
(

0
vt

))
dr

=
1∫

ε0

DNtr ·
(

−
(

0
vt

))
dr. (3.108)

Similarly, in the same way as in (3.81) and (3.82), it holds that

1∫
ε0

[D∂t + A∂r + (Ar −DrA+ M)]Vtr ·
(

−
(

0
vt

))
dr

≥ 3c1

8
‖
√

h̃vtr (t)‖2 − d

dt

( 1∫
ε0

h̃wtrwrdr
)

− C‖
√

h̃wtr (t)‖2

− Cε−2
0 ‖σt (t)‖2

L2
r
− C‖

√
h̃wr(t)‖2. (3.109)

And from (3.75) and the estimates of |rk1r | shown in (3.83), together with ‖rρ̃rr‖ ≤ C, we 
obtain

∣∣∣ −
1∫

ε0

DMrVt ·
(

0
vt

)
dr

∣∣∣ =
∣∣∣ 1∫
ε0

k1r h̃(r)(vt )
2dr

∣∣∣

≤ C

1∫
ε0

( 1

r2 + |ρ̃rr |
)
(rσt )

2dr

≤ c1

8
‖
√

h̃vtr (t)‖2 + Cε−2
0 ‖σt (t)‖2

L2
r
, (3.110)

where in last step we have used the fact ‖rσtr‖ ≤ C(‖σt‖ + ‖
√

h̃vtr‖).
Moreover, note that ‖

√
h̃vt‖ ≤ C‖rσt‖. From (3.98), we get

−
1∫

ε0

AtVrr ·
(

0
vt

)
dr = −

1∫
ε0

(
a(ρ, j)t h̃vrr +

(2j

ρ

)
t
h̃wrr

)
vtdr

≤ C|Ut (t)|0(‖
√

h̃vrr (t)‖2 + ‖
√

h̃vtr (t)‖2 + ‖rσt‖2). (3.111)

Now, we have to deal with the fourth term of left-hand side in (3.108). It is easy to see

−
1∫
DAtrVr ·

(
0
vt

)
dr = −

1∫
a(ρ, j)tr h̃vrvtdr +

1∫ (2j

ρ

)
tr

h̃wrvtdr =: I15 + I16.
ε0 ε0 ε0
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In the same fashion as in (3.102)-(3.103), we get

|I15| =
∣∣∣ 1∫
ε0

(
P ′′′(ρ)ρrσt + p′′(ρ)σtr − 2jrηt + 2jηtr

ρ2 + 4jηtρr

ρ3

+ 4jjrσt + 2j2σtr

ρ3 − 6j2σtρr

ρ4

)
h̃vrvtdr

∣∣∣
≤ C

(J0

ε0
+ |U|0

ε0
+ |Ur |0 + |Ut |0

)(∥∥∥
√

h̃vr

r

∥∥∥2 + ‖
√

h̃wtr‖2 + ‖
√

h̃vtr‖2 + ‖
√

h̃vt‖2
)

and

|I16| =
∣∣∣ 1∫
ε0

(2ηtr

ρ
− 2ηtρr

ρ2 − 2jrσt + 2jσtr

ρ2 + 4jσtρr

ρ3

)
h̃wrvtdr

∣∣∣
≤ C

(J0

ε0
+ |U|0

ε0
+ |Ut |0 + |ηr |0

)

×
(∥∥∥

√
h̃wr

r
(t)

∥∥∥2 + ‖σt (t)‖2
L2

r
+ ‖

√
h̃vtr (t)‖2 + ‖

√
h̃wtr (t)‖2

)
,

which implies, in view of ‖
√

h̃vt‖ ≤ C‖rσt‖, that

∣∣∣ −
1∫

ε0

DAtrVr ·
(

0
vt

)
dr

∣∣∣

≤ C
(J0

ε0
+ |U(t)|0

ε0
+ |Ur (t)|0 + |Ut (t)|0

)(∥∥∥
√

h̃Vr

r
(t)

∥∥∥2 + ‖
√

h̃Vtr (t)‖2 + ‖σt (t)‖2
L2

r

)
.

(3.112)

Similarly as in (3.105) and (3.106), using the fact ‖
√

h̃vt‖ ≤ C‖rσt‖ again, we have

∣∣∣ −
1∫

ε0

DLtr ·
(

0
vt

)
dr

∣∣∣

=
∣∣∣ 1∫
ε0

(
ρ̃r

(
− r2η + ε0

1 − ε0

1∫
ε0

ηdr
)

+ ρ̃r2σt

)
h̃vtdr

∣∣∣
≤ Cε−2

0 ‖η‖2 + C‖rσt‖2 (3.113)

and
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∣∣∣ −
1∫

ε0

DNtr ·
(

0
vt

)
dr

∣∣∣

≤ C

1∫
ε0

h̃|Ntr ||vt |dr

≤ C
(J0

ε0
+ |U(t)|0 + |rφr |0

ε0
+ |Ur (t)|0

)
(‖Ut (t)‖2 + ‖Utr (t)‖2

L2
r
+ ‖σr(t)‖2). (3.114)

Substituting (3.109)-(3.114) into (3.108), we have

c1

4
‖
√

h̃vtr (t)‖2

≤ d

dt

( 1∫
ε0

h̃wtrwrdr
)

+ C8‖
√

h̃wtr (t)‖2 + C‖
√

h̃wr(t)‖2 + Cε−2
0 (‖η(t)‖2 + ‖σt (t)‖2

L2
r
)

+ C
(J0

ε0
+ |U(t)|0 + |rφr |0

ε0
+ |Ur (t)|0 + |Ut (t)|0

)(
‖Ut (t)‖2 + ‖Utr (t)‖2

L2
r
+ ‖σr(t)‖2

+ ‖σt (t)‖2
L2

r
+ ‖

√
h̃Vtr (t)‖2 +

∥∥∥
√

h̃Vr (t)

r

∥∥∥2 + ‖
√

h̃vrr (t)‖2
)

(3.115)

for some positive constant C8.
By taking the step as ε4

0 [(3.107) + ν3(3.115)], we deduce from the fact ε0‖σt (t)‖L2
r

=∥∥∥ ε0
r
vt

∥∥∥ =
∥∥∥ ε0

r
wr

∥∥∥ ≤ C‖ε0

√
h̃wr‖ that (3.94) holds. Thus, the proof is complete. �

By straightforward computation, we get the following lemma.

Lemma 3.7. For t ∈ [0, T ), there exist positive constants c̄1, c̄2, c̄3, c̄4, independent of ε0 and t , 
such that

c̄1(‖U(t)‖2
L2

r
+ ε2

0‖Ur (t)‖2
L2

r
) ≤ ‖U(t)‖2

L2
r
+ ‖ε0

√
h̃Vr (t)‖2 ≤ c̄2(‖U(t)‖2

L2
r
+ ε2

0‖Ur (t)‖2
L2

r
),

and

c̄3(‖φr(t)‖2
L2

r
+ ‖U(t)‖2

L2
r
+ ε2

0‖Ur (t)‖2
L2

r
+ ε4

0‖Utr (t)‖2
L2

r
)

≤ ‖φr(t)‖2
L2

r
+ ‖U(t)‖2

L2
r
+ ε2

0‖Ur (t)‖2
L2

r
+ ε4

0‖
√

h̃Vtr (t)‖2

≤ c̄4(‖φr(t)‖2
L2

r
+ ‖U(t)‖2

L2
r
+ ε2

0‖Ur (t)‖2
L2

r
+ ε4

0‖Utr (t)‖2
L2

r
).

Proof. We claim that there exist positive constants c̃1, c̃2 such that

(rU)2 + (ε0rUr )
2 ≤ c̃1(rU)2 + c̃2(ε0

√
h̃Vr )

2.
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To see this, compute

c̃1(rU)2 + c̃2(ε0

√
h̃Vr )

2 − (rU)2 − (ε0rUr )
2

≥ c̃1(rU)2 + c̃2
h0

ec2
r−2ε2

0(2rU+ r2Ur )
2 − (rU)2 − (ε0rUr )

2

≥
(
c̃1 − 1 − 8c̃2

h0

ec2

)
(rU)2 +

( c̃2

2

h0

ec2
− 1

)
(ε0rUr )

2 + 4c̃2
h0

ec2
(ε0U)2

> 0,

provided that

c̃2 ≥ 2ec2

h0
, and c̃1 ≥ 1 + 8c̃2

h0

ec2
.

Thus, it follows that

‖U(t)‖2
L2

r
+ ε2

0‖Ur (t)‖2
L2

r
≤ c̃1‖U(t)‖2

L2
r
+ c̃2‖ε0

√
h̃Vr (t)‖2 ≤ 1

c̄1
(‖U(t)‖2

L2
r
+ ‖ε0

√
h̃Vr (t)‖2).

(3.116)

Moreover, from (3.75), it holds that

(rU)2 + (ε0

√
h̃Vr )

2 ≤ (rU)2 + (ε0

√
h0ec2r−1(2rU+ r2Ur ))

2

≤ (1 + 8h0e
c2)[(rU)2 + (ε0rUr )

2],

together with (3.116), which shows the first inequality in the lemma.
For the second one, we can do it in the same way. Thus, the proof is complete. �
Before we prove the Theorem 3.2, we give the following lemma.

Lemma 3.8. Let g(x) = x − x0 − dxβ for x ≥ 0, where constants β, x0, d satisfy β > 1, x0 > 0

and d > 0. If 0 < x0 <
β − 1

β

( 1

βd

) 1
β−1

, then there exist x∗
1 > 0 and x∗

2 > 0 such that

(1) g(x) < 0 for x ∈ [0, x∗
1 ) ∪ (x∗

2 , +∞),
(2) g(x) > 0 for x ∈ (x∗

1 , x∗
2 ).

Proof. Take the derivative of g(x),

dg(x)

dx
= 1 − dβxβ−1,

and let x∗ =
( 1

dβ

) 1
β−1

. Then 
dg(x)

dx
> 0 for x ∈ [0, x∗) and 

dg(x)

dx
< 0 for x ∈ (x∗, ∞), which 

lead to the desired result (1) and (2) provided that
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g(x∗) = β − 1

β

( 1

βd

) 1
β−1 − x0 > 0. �

Now, we complete the proof of Theorem 3.2 as follows.

Proof of Theorem 3.2. By taking the step as (3.18) + ν5[(3.59) + ν4(3.94)], we have

dE1(t)

dt
+ F1(t)

≤ C
(J0

ε0
+ |U(t)|0 + |rφr |0

ε0
+ |Ur (t)|0 + |Ut (t)|0

)(
‖φr‖2

L2
r
+ ‖U(t)‖2

L2
r
+ ε2

0‖Ut (t)‖2
L2

r

+ ε2
0‖Ur (t)‖2

L2
r
+ ε4

0‖Utr (t)‖2
L2

r
+ ‖ε0

√
h̃Vr (t)‖2 + ‖ε2

0

√
h̃Vtr (t)‖2

+ ‖ε2
0

√
h̃vrr (t)‖2

)
, ∀t ∈ [0, T ), (3.117)

where ν4, ν5 are some positive constants to be determined. Here we use the notations,

E1(t) :=
1∫

ε0

( r2(j̃σ − ρ̃η)2

2ρρ̃2 + r2(G(ρ) − G(ρ̃) − G′(ρ̃)σ ) + r2φ2
r

2
+ ν5s̃

2
ε2

0(vr )
2 + ν5h̃

2
ε2

0(wr)
2

+ ν5ν4
s̃

2
ε4

0(vtr )
2 + ν5ν4

h̃

2
ε4

0(wtr )
2
)
dr − ν1

1∫
ε0

ηr2φr

ρ̃
dr −

1∫
ε0

ν5
|b(U)|

2
h̃ε2

0(vr )
2dr

−
1∫

ε0

ν5
k1r h̃ε2

0(v(t, r))2

2
dr −

1∫
ε0

ν5ν2h̃ε2
0wrvdr −

1∫
ε0

ν5ν4
|b(U)|

2
h̃ε4

0(vtr )
2dr

−
1∫

ε0

ν5ν4
k1r h̃

2
ε4

0(vt )
2dr − ν5ν4ν3

1∫
ε0

ε4
0 h̃wtrwrdr

and

F1(t) :=
1∫

ε0

r2(j̃σ − ρ̃η)2

ρρ̃2 dr + ν1c0‖σ(t)‖2
L2

r
+ 3ν1

4
‖φr(t)‖2

L2
r
+ ν1ε0

1 − ε0

1∫
ε0

ηdr

1∫
ε0

η

ρ̃
dr

− ν1C6‖η(t)‖2
L2

r
+ ν5(

1

2
− ν2C7 − C9ν4)‖ε0

√
h̃wr(t)‖2 + ν5

ν2c1

8
‖ε0

√
h̃vr (t)‖2

+ ν5ν4

(1

2
− C8ν3

)
‖ε2

0

√
h̃wtr (t)‖2 + ν5ν4ν3c1

4
‖ε2

0

√
h̃vtr (t)‖2

− ν5C10(‖φr(t)‖2
L2

r
+ ‖σ(t)‖2

L2
r
+ ‖η(t)‖2

L2
r
).
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Firstly, we use (3.75), and Lemma 3.3, Lemma 3.5, and Lemma 3.7 to derive that

‖φr‖2
L2

r
+ ‖U(t)‖2

L2
r
+ ε2

0‖Ut (t)‖2
L2

r
+ ε2

0‖Ur (t)‖2
L2

r
+ ε4

0‖Utr (t)‖2
L2

r
+ ‖ε2

0

√
h̃vrr (t)‖

≤ C(‖φr(t)‖2
L2

r
+ ‖U(t)‖2

L2
r
+ ‖ε0

√
h̃Vr (t)‖2 + ‖ε2

0

√
h̃Vtr (t)‖2). (3.118)

Thus, denote

E(t) := ‖ε2
0

√
h̃Vtr (t)‖2 + ‖ε0

√
h̃Vr (t)‖2 + ‖U(t)‖2

L2
r
+ ‖φr(t)‖2

L2
r
.

And it follows from Lemma 3.5 and Lemma 3.7 that there exist positive constants c̄5 and c̄6 such 
that

c̄5n
2(t) ≤ E(t) ≤ c̄6n

2(t). (3.119)

On the other hand, by Lemma 3.3 and by (3.22)-(3.23), we get

|U(t)|0 + |rφr |0
ε0

+ |Ur (t)|0 + |Ut (t)|0

≤ Cε
− 5

2
0 (‖φr(t)‖L2

r
+ ‖U(t)‖L2

r
+ ε0‖Ur (t)‖L2

r
+ ε2

0‖Urr (t)‖L2
r
)

= Cε
− 5

2
0 n(t), (3.120)

where we have used the (3.92).
Thus, by (3.119) and (3.120), we may estimate the right-hand side of in (3.117):

dE1(t)

dt
+ F1(t) ≤ C

(J0

ε0
+ ε

− 5
2

0

√
E(t)

)
E(t). (3.121)

For the E1(t) and F1(t), we claim that there exist positive constants C11, C12 and C13 such 
that

C11E(t) ≤ E1(t) ≤ C12E(t), (3.122)

F1(t) ≥ C13E(t). (3.123)

To see this, first we have

r2G(ρ) − r2G(ρ̃) − r2G′(ρ̃)σ = P ′(ρ̄)

2ρ̄
(rσ )2 ≥ c7(rσ )2, ρ̄ is between ρ̃ and ρ.

Secondly, we handle the terms containing k1r in E1(t) by the same method as in (3.84)
and (3.110).
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Finally, it follows from (3.75) and (3.68) that

E1(t) ≥ C14[(1 − εα−1
0 − ν5 − ν5ν2)‖σ(t)‖2

L2
r
+ (1 − εα−1

0 − ν1)‖η(t)‖2
L2

r
+ (1 − ν1)‖φr(t)‖2

L2
r

+ ν5

(
1 − ε

1
2
0 − 1

2

)
‖ε0

√
h̃vr (t)‖2 + ν5(1 − ν2 − ν3ν4ε

2
0 − ν4)‖ε0

√
h̃wr(t)‖2

+ ν5ν4(1 − ε
1
2
0 − μ8)‖ε2

0

√
h̃vtr (t)‖2 + ν5ν4(1 − ν3)‖ε2

0

√
h̃wtr (t)‖2]

for some constant C14.
Likewise, it is easy to show that

F1(t) ≥ C15

[
(1 − εα−1

0 − ν1 − ν5C10)‖η(t)‖2
L2

r
+

(ν1c1

2
− εα−1

0 − ν5C10

)
‖σ(t)‖2

L2
r

+
(3ν1

4
− ν5C10

)
‖φr(t)‖2

L2
r
+ ν5ν4ν3c1

4
‖ε2

0

√
h̃vtr (t)‖2 + ν5ν2c1

8
‖ε0

√
h̃vr (t)‖2

+ν5ν4

(1

2
− C8ν3

)
‖ε2

0

√
h̃wtr (t)‖2 + ν5

(1

2
− ν2C7 − ν4C9

)
‖ε0

√
h̃wr(t)‖2

]
for some constant C15.

Now, we may choose some suitable positive constants νi(i = 1, 2, 3, 4, 5) and μ8 satisfying,

1 − ε
1
2
0 − μ8 ≥ 1

2
, 1 − ε

1
2
0 − 1

2
≥ 1

4
,

1

2
− (1 + C8)ν3 ≥ 1

4
,

1 − εα−1
0 − ν1 − ν5(1 + ν2 + C10) ≥ 1

2
,

1

2
− (1 + C7)ν2 − ν4(ν3ε

2
0 + 1 + C9) ≥ 1

4
,

ν1c1

2
− εα−1

0 − ν5C10

(
1 + 2c1

3

)
≥ ν1c1

4

for ε0 sufficiently small with α > 2, which leads to

E1(t) ≥ C11E(t) and F1(t) ≥ C13E(t)

for some constants C11 and C13.
On the other hand, we note that

E1(t) ≤ C12E(t)

for some positive constant C12. Therefore, our claim (3.122) and (3.123) hold.
Accordingly, we can rewrite (3.117) as

dE1(t)

dt
+ C16E1(t) ≤ C

(
εα−2

0 + ε
− 5

2
0

√
E1(t)

)
E1(t)

with α > 2. Furthermore, for 0 < ε0 
 1, it holds that

dE1(t)

dt
+ C16

2
E1(t) ≤ C17ε

− 5
2

0 E1(t)
3
2 , ∀t ∈ [0, T ), (3.124)
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for some positive constant C17, independent of C5 and ε0.
Now, let

M(t) = sup
τ∈[0,t]

ec′τE1(τ ), c′ < C16

2
.

Then, we derive from (3.124) that

M(t) ≤ M(0) + C17ε
− 5

2
0 M

3
2 (t)e(− C16

2 +c′)t
t∫

0

e(
C16

2 −c′)τ dτ ≤ M(0) + C17ε
− 5

2
0 M

3
2 (t). (3.125)

To get the upperbound of M(t), we consider g(x) = x − x0 − dxβ mentioned in Lemma 3.8. 

Let x = M(t), x0 = M(0) > 0, d = C17ε
− 5

2
0 > 0 and β = 3

2 > 1. For x0 = M(0) <
1

3

( 2

3C17
ε
γ

0

)2

and x∗ =
( 2

3C17
ε
γ

0

)2
with γ ≥ 5

2 , there holds that g(x∗) = 1

3

( 2

3C17
ε
γ

0

)2 − x0 > 0. By (3.125), 

Lemma 3.8 and by the continuity of M(t) respect with to t , we get

M(t) <
( 2ε

γ

0

3C17

)2
, ∀t ∈ [0, T ), (3.126)

namely,

E1(t) ≤ e−c′t
( 2ε

γ

0

3C17

)2
, ∀t ∈ [0, T ). (3.127)

Note that C11E(t) ≤ E1(t) ≤ C12E(t), in view of the equivalence between n(t) and E(t) (see 
(3.119)), we get the equivalence between n(t) and E1(t), which implies that there exist some 
positive constants C4 and C5 with C4 < C5 such that if

n(0) = ε2
0‖Urr (0)‖L2

r
+ ε0‖Ur (0)‖L2

r
+ ‖U(0)‖L2

r
+ ‖φr(0)‖L2

r
≤ C4ε

γ

0 ,

then it holds that

n(t) = ε2
0‖Urr (t)‖L2

r
+ ε0‖Ur (t)‖L2

r
+ ‖U(t)‖L2

r
+ ‖φr(t)‖L2

r
≤ C5e

− c′ t
2 ε

γ

0 , ∀t ∈ [0, T ).

(3.128)
That is,

N∗(T ) ≤ C5ε
γ

0 , (3.129)

which implies, together with the definition of T , that

T = t∗.

The proof is complete. �
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In the end, we prove the Theorem 1.2.

Proof of Theorem 1.2. It suffices to prove that t∗ = ∞.
If t∗ < ∞, using Theorem 3.2 we get N∗(t∗) ≤ C5ε

γ

0 with γ ≥ 5
2 . Then, we regard t∗ as the 

initial time and use Theorem 3.1 to draw a conclusion that there exists a t0(C5, ε0) > 0 such that 
(3.2)-(3.3) exists a unique solution (σ, η, φ)(t, r) ∈ [χ2,r ([t∗, t∗ + t0(C5, ε0)]; �)]3. This is a 
contradiction to the definition of t∗, thus, t∗ = ∞.

Therefore (1.6)-(1.7) has a unique solution (ρ, j, �)(t, r) ∈ [χ2,r ([0, ∞); �)]3 with N∗(t) ≤
C5ε

γ

0 for t ≥ 0.
Moreover, let

m(t) := ‖U(t)‖L2
r
+ ε0‖∂U(t)‖L2

r
+ ε2

0‖∂2U(t)‖L2
r
+ ‖φr(t)‖L2

r
. (3.130)

Differentiating (3.9) with respect to t , we get the following

ε2
0‖Ut t (t)‖L2

r
≤ C(ε2

0‖Utr (t)‖L2
r
+ ε0‖Ut (t)‖L2

r
+ ‖U(t)‖L2

r
+ ‖φr(t)‖L2

r
),

ε2
0‖Utr (t)‖L2

r
≤ C(ε2

0‖Ut t (t)‖L2
r
+ ε0‖Ut (t)‖L2

r
+ ‖U(t)‖L2

r
+ ‖φr(t)‖L2

r
),

which, together with Lemma 3.3 and Lemma 3.5, gives the equivalence of m(t) and n(t).
Then, it follows from (3.128) that

m(t) ≤ Ce− c′ t
2 ε

γ

0 , ∀t ∈ [0,∞), (3.131)

for some positive constant C, where γ ≥ 5
2 . Thus, the proof is complete. �
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