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a b s t r a c t

In this paper, two different kinds of degenerate n-degree Fisher-type equations with
delays are considered. Due to the difference of the reaction terms, the existence of
traveling front are proved by different methods. More precisely, when the reaction
term satisfies the weak quasimonotonicity condition, for c > 2, the existence result
is given by the super-sub solution method and the fixed point theorem. Then
for c∗ < c ⩽ 2, where c∗ is the minimal speed of degenerate p-degree Fisher-
type equations without delays, the existence result is proved by the perturbation
method and the implicit function theory. For the other type reaction term, we
apply the monotone iteration method and the super-sub solution method to obtain
the existence conclusion.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In this paper, we focus on the existence of traveling wave fronts of the following two different types of
degenerate p−degree Fisher-type equations with delays

∂u(x, t)
∂t

= ∂2u(x, t)
∂x2 + up(x, t)(1 − u(x, t− τ)), (1.1)

and
∂u(x, t)
∂t

= ∂2u(x, t)
∂x2 + up(x, t− τ)(1 − u(x, t)), (1.2)

where p > 1 is a number (no need to be integer).
When τ = 0, Eqs. (1.1) and (1.2) are reduced to

∂u(x, t)
∂t

= ∂2u(x, t)
∂x2 + up(x, t)(1 − u(x, t)), (1.3)
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which describes some isothermal autocatalytic chemical reactions introduced in [1,2]. In recent years, the
existence and stability of traveling wave fronts of (1.3), including the continuous model and the lattice model,
have been studied, such as [1–16] and references therein. From [2,9], we know for each p > 1, there exists

critical speed c∗(p) > 0, which is also described as the minimal speed, such that (1.3) admits an unique
raveling front solution ϕ if and only if c ⩾ c∗(p). The relationships between the value of c∗(p) and the
arameter p have been discussed in the existing studies. When p = 2, the minimum wave speed c∗(2) =

√
2

2
as first observed numerically in [10], and further confirmed by the phase-plane form of comparison theorems

n [7]. For p > 1, in [9], the minimum wave speed c∗(p) was proved to be continuous and monotonically
ecreasing on p, and tested asymptotically as

c∗(p) =
{

2 − 2.33107(p− 1) 2
3 + o((p− 1) 2

3 ), p → 1+,√
2
p + o(

√
2
p ), p → +∞.

For the population dynamics, the models are related to the matured age of species, the so-called time-
elay. The existence of traveling wave fronts for such time-delayed equations has been one of hot research
pots as we know. The methods adopted for proofs are various, for example, the super-sub solution method
ombining the fixed point theorem [17,18], the monotone iteration method combining the super-sub solution
ethod [19,20], the phase plane techniques [21], the perturbation method combining the implicit function

heory [22] for the case of delayed degenerate diffusion equations, and so on. Very recently, in [3], the existence
f traveling wave fronts of (1.2) has been proved by the monotone semiflows theorem, and the other properties
f such fronts have also been given. To our best knowledge, the study on the existence of traveling wave fronts
f delayed diffusion equations with degenerate nonlinearities, such as (1.1) and (1.2), is quite incomplete.
o prove the existence of traveling waves for (1.1) and (1.2), respectively, is the main purpose in this paper.
ince the reaction terms in (1.1) and (1.2) are different, we will adopt different methods mentioned above
o give the existence conclusions of (1.1) and (1.2) respectively.

Traveling wave fronts of (1.1) or (1.2) connecting 0 and 1, are defined as follows:

ϕ′′(ξ) − cϕ′(ξ) + ϕp(ξ)(1 − ϕ(ξ − cτ)) = 0, (1.4)

or
ϕ′′(ξ) − cϕ′(ξ) + ϕp(ξ − cτ)(1 − ϕ(ξ)) = 0, (1.5)

correspondingly, with
lim

ξ→−∞
ϕ(ξ) = 0, lim

ξ→+∞
ϕ(ξ) = 1, (1.6)

where ′ := d
dξ , ξ = x+ ct and c is the wave speed.

Our main results are as follows.

heorem 1.1. When τ > 0 is small, (1.4) with (1.6) has an increasing solution for any c > 2. That is, (1.1)
dmits a traveling wave front ϕ connecting 0 and 1.

heorem 1.2. (1.2) admits a strictly increasing traveling wave front ϕ connecting 0 and 1 for any c > c∗(τ),
here c∗(τ) uniquely satisfies

inf
ϕ∈Γ2

sup
ξ∈R

ϕ′′(ξ) + ϕp(ξ − cτ)(1 − ϕ(ξ))
ϕ′(ξ) < c

nd

Γ2 =
{

ϕ ∈ C2(R,R) :
(i) lim

ξ→−∞
ϕ(ξ) = 0, lim

ξ→+∞
ϕ(ξ) = 1;

′

}
.

(ii) ϕ (ξ) > 0, ξ ∈ R.
2
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Remark 1.1. When we revised this paper after receiving the review reports, we happened to note a new
nline publication [3], which is mainly to investigate the influence of delay and degeneracy on the propagation
hreshold. The existence of traveling wave fronts (1.2) was simply claimed to be obtained in [3] (see Lemma
.2 therein) by the theory of the monotone semiflow but without a detailed proof. It seems to us that the
roof of the existence for such traveling waves is not straightforward. Here, as an independent study, we
ndeed prove it by a different approach, the so-called monotonic iteration technique combining with the
uper-sub solution method. In addition, in [3], the critical speed is positive and less than or equal to the
onstant

√
1/K(n), where K(n) is a strictly increasing function of n. While in our Theorem 1.2, we give a

new up-bound of the critical speed.

Remark 1.2. The nonexistence problem is also interesting and important, while, we focus on the existence
results and could not solve the nonexistence problem in this paper. This problem will be our further study.

From the above results on the minimal speed c∗(p), we see that 0 < c∗(p) < 2. It is interesting for us to
nvestigate the existence of traveling wave fronts of (1.1) for c∗(p) < c < 2, which is given in the following
heorem.

heorem 1.3. Assume τ > 0 is small. Then (1.1) admits a strictly increasing traveling wave front ϕ
onnecting 0 and 1 for each c(τ) > c∗(p), where c∗(p) is the minimal speed of (1.3).

emark 1.3. From Theorem 1.1, when the delay τ is small, we can prove the existence of traveling wave
ronts of (1.1) for the speed c is larger than 2, which does not depend on the delay τ . And we can also see
hat 2 is an upper bound of the minimal speed. While from Theorem 1.3, we obtain the strict monotonicity
f traveling wave front.

The rest of the paper is organized as follows. In the next section, we give the basic assumptions, and
ntroduce the abstract existence theorems shown in [17–20]. These theorems will be applied to prove
heorems 1.1–1.3. In Section 3, due to the different kinds of nonlinearities of (1.4) and (1.5), we prove main

esults by the super-sub solution method combining the fixed pointed theorem, or the monotone iteration
ethod combining the super-sub solution method, or the phase analysis method, respectively.

. Preliminaries

In this section, we introduce two lemmas about the existence of traveling wave fronts of delayed diffusion
quations with different kinds of nonlinearities. Firstly, for convenience, we let ϕ(s) := ϕ(ξ)(s) = ϕ(ξ + s),
here s ∈ [−cτ, 0], and introduce the following wave equation

ϕ′′(ξ) − cϕ′(ξ) + f(ϕ(ξ)(0), ϕ(ξ)(s)) = 0, (2.1)

here s ∈ [−cτ, 0]. Then we give some assumptions on f .
A1) f(0, 0̃) = f(1, 1̃) = 0, where ϕ̃ : [−cτ, 0] → R is the constant function with value 0 or 1 for all ξ ∈ R;

(A2) There exists a positive constant L such that

|f(ϕ(0), ϕ(s)) − f(ψ(0), ψ(s))| ⩽ L sup
s∈[−cτ,0]

|ϕ(s) − ψ(s)|

for ϕ, ψ ∈ C([−cτ, 0],R) with 0 ⩽ ϕ(s), ψ(s) ⩽ 1, s ∈ [−cτ, 0];
(A3) f(ϕ̂, ϕ̌) is increasing in ϕ̌, for 0 ⩽ ϕ̂, ϕ̌ ⩽ 1. And there is a β ⩾ 0 such that

f(ϕ(0), ϕ(s)) − f(ψ(0), ψ(s)) + β[ϕ(0) − ψ(0)] ⩾ 0,

for ϕ, ψ ∈ C([−cτ, 0],R) with 0 ⩽ ϕ(s), ψ(s) ⩽ 1, s ∈ [−cτ, 0]; or

3
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(A4) There is a β ⩾ 0 such that

f(ϕ(0), ϕ(s)) − f(ψ(0), ψ(s)) + β[ϕ(0) − ψ(0)] ⩾ 0,

for ϕ, ψ ∈ C([−cτ, 0],R) with (i) 0 ⩽ ψ(s) ⩽ ϕ(s) ⩽ 1 for s ∈ [−cτ, 0] and (ii) eβs[ϕ(s) −ψ(s)] increasing in
s ∈ [−cτ, 0].

In the following, we will use the super-sub solution method to discuss the existence of traveling wave
fronts. Thus, we introduce the super-sub solution here.

Definition 2.1. A continuous function ϕ : R → R is called a supersolution of (2.1), if ϕ′ and ϕ
′′ exist

almost everywhere in R and they are essentially bounded on R and if ϕ satisfies

F (ϕ) := ϕ
′′(ξ) − cϕ

′(ξ) + f(ϕ(0), ϕ(s)) ⩽ 0, a.e. in R.

A subsolution is defined in a similar way by reversing the inequality in the above inequality.

From Theorem 3.1 in [17], Theorems 2.1 and 2.2 in [18], Theorems 3.6 and 4.5 in [19] and Theorem 1.2
in [20], we can conclude the following existence lemmas.

Lemma 2.1. Assume that (A1), (A2) and (A4) hold. We assume that the supersolution ϕ and the subsolution
satisfy

(H1) 0 ⩽ ϕ ⩽ ϕ ⩽ 1, ξ ∈ R;
(H2) limξ→−∞ ϕ(ξ) = 0, limξ→+∞ ϕ(ξ) = 1;
H3) The set

Γ1(ϕ, ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ ϕ ∈ C(R,R) :

(i) ϕ is increasing in R and ϕ ⩽ ϕ ⩽ ϕ;
(ii) eβξ[ϕ(ξ) − ϕ(ξ)] and eβξ[ϕ(ξ) − ϕ(ξ)] are
increasing in ξ ∈ R;

(iii) eβξ[ϕ(ξ + s) − ϕ(ξ)] is increasing in
ξ ∈ R for every s > 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
is non-empty.
(H4) f(ϕ(0), ϕ̃(s)) ̸= 0 for ϕ ∈ (0, infξ∈R ϕ(ξ)] ∪ [supξ∈R ϕ(ξ), 1).

Then (2.1) with (1.6) has an increasing solution.

emma 2.2. Assume that (A1), (A2) and (A3) hold. Suppose

inf
ϕ∈Γ2

sup
ξ∈R

ϕ′′(ξ) + f(ϕ(0), ϕ(−c0τ))
ϕ′(ξ) < ∞

or some c0 ⩾ 0, where

Γ2 =
{

ϕ ∈ C2(R,R) :
(i) lim

ξ→−∞
ϕ(ξ) = 0, lim

ξ→+∞
ϕ(ξ) = 1;

(ii) ϕ′(ξ) > 0, ξ ∈ R.

}
.

hen for any c > c∗(τ), there exists a strictly increasing solution of (2.1) with (1.6), where c∗(τ) ⩾ 0 uniquely
atisfies

inf
ϕ∈Γ2

sup
ξ∈R

ϕ′′(ξ) + f(ϕ(0), ϕ(−cτ))
ϕ′(ξ) < c

or any c > c∗(τ).

4
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3. Proof of main results

In this section, we firstly apply the existence results given in Section 2 to (1.1) and (1.2) to finish the
proofs of Theorems 1.1–1.2. Now, we begin to prove Theorem 1.1.

Proof of Theorem 1.1. From (1.4), f(ϕ(0), ϕ(s)) = ϕp(0)(1 − ϕ(−cτ)). Obviously, f satisfies (A1) and
A2). Then we will prove f satisfies (A4). From (i) and (ii) in (A4)

f(ϕ(0), ϕ(s)) − f(ψ(0), ψ(s)) =ϕp(0)(1 − ϕ(−cτ)) − ψp(0)(1 − ψ(−cτ))
=(1 − ϕ(−cτ))(ϕp(0) − ψp(0)) + ψp(0)(ψ(−cτ) − ϕ(−cτ))
⩾ − eβcτ (ϕ(0) − ψ(0)).

If β > 1 and τ is small enough, then

f(ϕ(0), ϕ(s)) − f(ψ(0), ψ(s)) + β[ϕ(0) − ψ(0)] ⩾ (β − eβcτ )(ϕ(0) − ψ(0)) ⩾ 0,

which implies f satisfying (A4).
Then in order to apply Lemma 2.1 to obtain the existence results, we need to construct a pair of super-sub

solutions that satisfy (H1)-(H4). Inspired by the ways to construct subsolutions in [23], let

ϕ(ξ) =
{

0, ξ ⩽ ξ1,
1
2 − k1e

−dξ, ξ > ξ1,

here ξ1 = − 1
d ln 1

2k1
, k1 <

1
2 and d > 0 is small enough determined later. Obviously, ξ1 < 0.

When ξ ⩽ ξ1, ϕ(ξ) = 0 and ϕ(ξ − cτ) = 0. Thus F (ϕ) = 0. When ξ1 < ξ ⩽ ξ1 + cτ , ϕ(ξ) = 1
2 − k1e

−dξ

and ϕ(ξ − cτ) = 0. Then

F (ϕ) = −k1e
−dξd2 − ck1e

−dξd+ (1
2 − k1e

−dξ)p := g1(d).

ince g1(0) = ( 1
2 − k1)p > 0, then for small d > 0, g1(d) ⩾ 0 for ξ ∈ (ξ1, ξ1 + cτ ]. Thus F (ϕ) ⩾ 0. When

> ξ1 + cτ , ϕ(ξ) = 1
2 − k1e

−dξ and ϕ(ξ − cτ) = 1
2 − k1e

−dξedcτ . Hence

F (ϕ) = − k1e
−dξd2 − ck1e

−dξd+ (1
2 + k1e

−dξedcτ )(1
2 − k1e

−dξ)p

⩾[−k1d
2 − ck1d+ (1

2 − k1e
−d(ξ1+cτ))pk1e

dcτ ]e−dξ

:=g2(d)e−dξ

where g2(d) = −k1d
2 − ck1d + ( 1

2 − k1e
−d(ξ1+cτ))pk1e

dcτ . Repeating the similar argument, since g2(0) =
( 1

2 − k1)pk1 > 0, then for small d > 0, F (ϕ) ⩾ 0. Therefore ϕ is a subsolution to (1.4).
We continue to give the supersolution. From Proposition 5.1.2 in [19], for c > 2 and small τ , the function

ϕ = eλ1ξ

eλ1ξ+k2
, where 0 < k2 < eλ1ξ1 and λ1 = c−

√
c2−4

2 > 0, satisfies

ϕ
′′(ξ) − cϕ

′(ξ) + ϕ(ξ)(1 − ϕ(ξ − cτ)) ⩽ 0.

ence, by noting 0 ⩽ ϕ ⩽ 1, we have

F (ϕ) = ϕ
′′(ξ) − cϕ

′(ξ) + ϕ
p(ξ)(1 − ϕ(ξ − cτ)) ⩽ ϕ

′′(ξ) − cϕ
′(ξ) + ϕ(ξ)(1 − ϕ(ξ − cτ)) ⩽ 0.

herefore ϕ is a supersolution to (1.4).

5
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In the end, we check ϕ and ϕ given above are satisfying (H1)-(H4). Obviously limξ→−∞ ϕ = 0 and
imξ→+∞ ϕ = 1, thus, (H2) is fulfilled. When ξ ⩽ ξ1, ϕ−ϕ = ϕ ⩾ 0. When ξ > ξ1, by recalling 0 < k2 < eλ1ξ1 ,

ϕ− ϕ ⩾
eλ1ξ1 − k2

2(eλ1ξ + k2) ⩾ 0.

Therefore, by recalling ϕ ⩾ 0 and ϕ ⩽ 1, we see that (H1) is fulfilled. We further prove Γ (ϕ, ϕ) is non-empty.
t is sufficient for us to prove ϕ ∈ Γ (ϕ, ϕ). By combining the fact ϕ′ = λ1k2e

λ1ξ

(eλ1ξ+k2)2 ⩾ 0 with the proof of
H1), (i) in (H3) is fulfilled. Since eβξ[ϕ(ξ) −ϕ(ξ)] = 0, then eβξ[ϕ(ξ) −ϕ(ξ)] = 0 is increasing. When ξ ⩽ ξ1,
βξ[ϕ(ξ) − ϕ(ξ)] = eβξϕ(ξ), which is obviously increasing. When ξ > ξ1, by recalling k2 < eλ1ξ1 ,

{eβξ[ϕ(ξ) − ϕ(ξ)]}′ = eβξ
β(e2λ1ξ − k2

2) + 2k2λ1e
λ1ξ + 2(β − d)k1(eλ1ξ + k2)2e−dξ

2(eλ1ξ + k2)2 > 0

if d is small. In conclusion, (ii) in (H3) is fulfilled. Repeating the proof in [17], if β ⩾ λ1, then for every
s > 0, eβξ[ϕ(ξ + s) − ϕ(ξ)] = eβξ[ϕ(ξ + s) − ϕ(ξ)] is increasing in ξ ∈ R. In a word, Γ (ϕ, ϕ) is non-empty. It
is easy to verify that f(ϕ(0), ϕ̃(s)) ̸= 0 for ϕ ∈ (0, infξ∈R ϕ(ξ)] ∪ [supξ∈R ϕ(ξ), 1) = ( 1

2 , 1), which implies that
H4) is fulfilled. Then from Lemma 2.1, we deduce the conclusion.

With the aid of Lemma 2.2, we continue to complete the proof of Theorem 1.2.

roof of Theorem 1.2. For (1.5), now, f(ϕ(0), ϕ(s)) = ϕp(−cτ)(1 − ϕ(0)). Since 0 ⩽ ϕ(−cτ), ϕ(0) ⩽ 1,
then obviously, f(ϕ̂, ϕ̌) is increasing in ϕ̌. Moreover, if 0 ⩽ ψ(−cτ) ⩽ ϕ(−cτ) ⩽ 1, 0 ⩽ ψ(0) ⩽ ϕ(0) ⩽ 1, and
β ⩾ 1, then

f(ϕ(0), ϕ(s)) − f(ψ(0), ψ(s)) =(ϕp(−cτ) − ψp(−cτ))(1 − ϕ(0)) − ψp(−cτ)(ϕ(0) − ψ(0))
⩾ − ψp(−cτ)(ϕ(0) − ψ(0))
⩾ − β(ϕ(0) − ψ(0)).

Since the traveling wave front to (1.3) with c = c∗(p) belongs to Γ2, then, from [2,9], taking c0 = c∗(p) gives

inf
ϕ∈Γ2

sup
ξ∈R

ϕ′′(ξ) + ϕp(ξ − c0τ)(1 − ϕ(ξ))
ϕ′(ξ) ⩽ inf

ϕ∈Γ2
sup
ξ∈R

ϕ′′(ξ) + ϕp(ξ)(1 − ϕ(ξ))
ϕ′(ξ) ⩽ c∗(p) < ∞.

hus from Lemma 2.2, we can prove the results in Theorem 1.2.

In Theorem 1.1, due to the way of constructing the supersolution, we need the speed c is larger than
to guarantee the existence of traveling wave fronts of (1.1). While when τ = 0, by recalling the content

egarding to the minimal speed c∗(p) in Introduction, we know c∗(p) < 2 for p > 1. It is natural for us
o consider the existence of traveling wave fronts for c∗(p) < c < 2. Inspired by [22], we will apply the
erturbation method and the implicit function theory to discuss this problem.

roof of Theorem 1.3. Let ψ(ξ) = ϕ′(ξ), then a strictly increasing solution ϕ(ξ) to (1.4) with (1.6) is
quivalent to the solution to ⎧⎨⎩ ϕ′(ξ) = ψ(ξ),

ψ′(ξ) = cψ(ξ) − ϕp(ξ)(1 − ϕ(ξ − cτ)),
ϕ′(ξ) > 0, ξ ∈ R,

(3.1)

onnecting (0, 0) and (1, 0). Repeating the similar proof of Proposition 2.1 in [24], we conclude that for some
fixed speed c > 0, ϕ(ξ) is a strictly increasing solution to (1.4) with (1.6) if and only if ψ(ϕ) > 0 for any
ϕ ∈ (0, 1) is a solution of {

dψ
dϕ = c− ϕp(1−ϕcτ )

ψ ,
+ − (3.2)
ψ(0 ) = 0, ψ(1 ) = 0,
6
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where ϕcτ = ϕ(ξ − cτ) for short. We denote the trajectory of (3.1) starting from the point (0, 0) by
ψ = T0(ϕ, c, τ) with T0(0, c, τ) = 0, which is also the solution to{

dψ
dϕ = c− ϕp(1−ϕcτ )

ψ ,

ψ(0+) = 0.

While the trajectory of (3.1) starting from the point (1, 0) is denoted by ψ = T1(ϕ, c, τ) with T1(1, c, τ) = 0,
hich is also the solution to {

dψ
dϕ = c− ϕp(1−ϕcτ )

ψ ,

ψ(1−) = 0.

When τ = 0, from [2,9], for any c ⩾ c∗(p), there exist trajectories connecting (0, 0) and (1, 0). Thus for small
τ > 0, trajectories must cross the line ϕ = 1

2 .
For any fixed speed c1 ⩾ c∗(p), the unperturbed problem corresponds to the solution ψ = T (ϕ, c1),

∈ [0, 1]. Hence, when τ = 0, T0(ϕ, c1, τ) = T1(ϕ, c1, τ) := T (ϕ, c1), with c1 ⩾ c∗(p) and ϕ ∈ [0, 1]. Let

Φ(c, τ) = T0(1
2 , c, τ) − T1(1

2 , c, τ).

bviously Φ(c1, 0) = 0 and
∂Φ(c1, 0)

∂c
=
∂T0( 1

2 , c1, 0)
∂c

−
∂T1( 1

2 , c1, 0)
∂c

.

Moreover, let h0(ϕ) = ∂T0(ϕ,c1,0)
∂c and h1(ϕ) = ∂T1(ϕ,c1,0)

∂c . From (3.2), since

dT0

dϕ
= c− ϕp(1 − ϕcτ )

T0
,

hen T0(ϕ, c, τ) = cϕ−
∫ ϕ

0
sp(1−scτ )
T0(s,c,τ) ds. Thus

h0(ϕ) = ∂T0(ϕ, c1, 0)
∂c

= ϕ+
∫ ϕ

0

sp(1 − s)
T 2(s, c1) h0(s)ds.

irectly computing gives h0(0) = 0 and dh0(ϕ)
dϕ = 1 + ϕp(1−ϕ)

T2(ϕ,c1)h0(ϕ). Therefore

h0(ϕ) =
∫ ϕ

0
e

∫ ϕ

t

sp(1−s)
T 2(s,c1)

ds
dt.

pecially,

h0(1
2) =

∫ 1
2

0
e

∫ 1
2

t

sp(1−s)
T 2(s,c1)

ds
dt.

epeating the similar argument, we have

h1(1
2) =

∫ 1
2

1
e

∫ 1
2

t

sp(1−s)
T 2(s,c1)

ds
dt.

hus h0( 1
2 ) − h1( 1

2 ) > 0, which implies ∂Φ(c1,0)
∂c ̸= 0. By using the implicit function theorem, for sufficiently

mall τ , Φ(c(τ), τ) = 0. Therefore, we can complete the proof of Theorem 1.3.
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